講義録レポート

講座	証券アナリスト	科目①	2次 ディスカウントキャッシュフロー再入門					
目標年	2014年合格目標	科目②						
コース	2次対策	回数	1 回					
収録日	2014 &	7	D 27 D					
	2014 年	講義録	月 27 日					
講師名	横田 先生	枚数 補助レジュメ	5 枚 ^{※レポート} 含まず カイズ かく ()					
		枚数	1~ ()					
講義構成	講義(87)分							
	\odot							
/ + m */- + +	2							
使用教材	3							
	4							
	有 · 無							
#7 ** ###	1							
配布物	2							
	3							
正誤表	有 ・ 無 枚							
備考								

科 デスカウント コ 2次対策 回 目 キャッシュフロース 入門講座 数 /

配	★ミニテスト:あり []	なし	★答	練:問題用紙・	解答用紙・解答解説	講	
布物	★実力テスト:あり[]	なし	★その1	他のレジュメ[(本語) (本語)
物	◇配布物なし						師	先生

科デスカウント目もかりシュフロー

2次対策

回

l /

配布物

★ミニテスト:あり[
★実力テスト:あり[

◇配布物なし

] なし

なし

★答 練:問題用紙・解答用紙・解答解説 ★その他のレジュメ []

講

横田

テキスト ペ ー ジ		黒	板	内	容	
	p. 40	5		8	216	
	4. 347 6. 049 142. 023	÷ 1.15 ² ÷ 1.15 ³				
	4	定率成長モ Di (I+1)				
otigenetterion.	$\frac{(1+g)}{(1+r)}V_0 =$	$\frac{D_1(1+8)}{(1+1)^2}$		*	2	
		$\frac{+g}{+\gamma}$ $\sqrt{6} = \frac{-1}{2}$				
	(l+ r)	$V_0 - (1+9) V_0 = (1-9) V_0 $) Vo =	> Vo	= D ₁ (r-g)	

科ディスカウントコ 2次対策 目もッシュフロース 入門講座

回 数 /

配 布 * 実力テスト: あり[◇配布物なし] なし] なし

★答 練:問題用紙・解答用紙・解答解説 ★その他のレジュメ []

講

横田

テキスト 黒 板 P. 44 60 60×1.1 60×1.1°~ サステイナブル成長率 =ROEX(1-西省性向) $10\% \times (1-0.3) = 1\%$ P.46 有期限 c 無期限 D, D2 D3 . D4 D4×1.05~ D4×1.05~

科 ディスカウント コ 2次対策 回 目 キャッシュフロー ス 入門 講座 数 /

テキスト	黒板内容
ページ	7/K 1/3 H
	P.52 クリーン・サープラス
	B/s P/L B/s
,	500 500
	1.000 利益 100 1100
	西当 430 1.070 600 570
	P.54 株·
	200
	80 120 残余利益
	株·簿800×要求收益率10%。
	ROE 25% > 要求收益率10% → 価値「十」
	(実績) (期待)

科 デスカウント コ 2次対策 回 目 キャッシュフロース 入門講座 数 /

テキスト	黒	板	内	容	
テキー		株式価値			一残利の現在価値 1.200 ← 120 0.1 期首株主資本簿価