### 講義録レポート

<u>11-14-A-101-01</u> 講義録コード 証券アナリスト 証券分析 講座 科目① 2014年合格目標 目標年 科目② 数 回 回 1次対策·基本講義 □集合DVD ■個別DVD 用 涂 ■WEB ・ □衛星 ・ ■カセット通信 ■DVD通信 口資料通信 収録日 7 月 2013 年 16 日 講義録 ※レポート 枚 10 枚数 含まず 先生 鈴木 講師名 サイズ 補助レジュメ 5 枚 枚数 講義(64)分 講義構成 講義 (79)分 → P. 1 ~ P. 19 ① 基本テキスト ② 問題集 P. ~ P. 使用教材 ③ 例題集 P. **(4**) 無 ① 基本テキスト、問題集、例題集 配布物 2 3 枚 正誤表 <u>有\_\_</u> 備考

| 証券アナリスト講義録 | 科目 | 証券分析 | コース | /次基本 | 回数 |  |
|------------|----|------|-----|------|----|--|
|------------|----|------|-----|------|----|--|

テキスト ペ ー ジ 内 容 黒 板 証券分析の基礎(1) ( / / / / / / / / / / / ) 投資収益率 0.過去のデータの平均値 算術平均 幾何平均 の 将来の収益率の予想 (期待値 分散、標準偏差 共分散、相関係数 正規后布 投資収益率 = 収益額 投資額 4ンカム・ゲイン キャピタル・ゲイン (or ロス) = 配当フーボッ + 値上がり益 (or 値下がり損) 投資額

## 証券アナリスト講義録 間 証券 布析 3 /次基本 ぬ /

| テキスト<br>ペ ー ジ | 黒 板 内 容                                       |
|---------------|-----------------------------------------------|
|               | ☆ 過去のデータの平均                                   |
|               | ① 算術平均 = 合計                                   |
|               | ②幾何平均…複利計算を前提にして 名期間にならした数値                   |
|               |                                               |
|               | n 期間                                          |
|               | $R_1$ $R_2$ $R_2$ $R_1$                       |
|               | ① 算術平均 = $\frac{R_1 + R_2 + \cdots + R_n}{n}$ |
|               | $= \frac{\sum_{t=1}^{n} R}{n}$                |
|               | ○···最後の数<br>∑···たし第を表す<br>t=O···最初の数          |
|               | 最初の数                                          |
|               |                                               |

### 証券アナリスト講義録 間証券 分析 1 / 次基本

| >配布物なし   プー・・・元:                                                                     | V AC 1D  |
|--------------------------------------------------------------------------------------|----------|
|                                                                                      | テキストペー ジ |
|                                                                                      |          |
| ②幾何平均のイメージ                                                                           |          |
| $(/+R_1)\times(1+R_2)\times\cdots\times(1+R_n)$                                      |          |
|                                                                                      |          |
| $(/+Rg)\times ( +Rg)\times\times ( +Rg)$                                             |          |
|                                                                                      |          |
| $(/+Rg)^{n} = ( +R_{1})( +R_{2}) \times \cdots \times ( +R_{n})$                     |          |
| $  + Rg = \{ ( +R_1)( +R_2) \times - \cdots \times ( +R_n) \} \overline{\mathbf{n}}$ |          |
|                                                                                      |          |
|                                                                                      |          |
| Question (P.4) y年間                                                                   |          |
| 20% -10% 5% 25%                                                                      |          |
| 幾何平均のイメージ                                                                            |          |
| <b>気や「ナンリの) ハ ノーシ</b>                                                                |          |
| $(/+0.2)\times (/-0.1)\times (/+0.05)\times (/+0.25)$                                |          |
|                                                                                      |          |
| (1, 1, 0, 2) 4                                                                       |          |
| $(1 + Rg)^{\varphi}$                                                                 |          |
|                                                                                      |          |
|                                                                                      |          |
|                                                                                      |          |

### 証券アナリスト講義録

★実力テスト:あり〔

なし

練:問題用紙・解答用紙・解答解説 ★その他のレジュメ [

金节木 先生

◇配布物なし

テキスト ペ ー ジ 内 容 黒 板

 $(/ + Rg)^4 = /./ \times 0.9 \times /.05 \times /.25$ 1.4175 

> /+Rg = 1.091 Rg = 0.091 = 9.1%

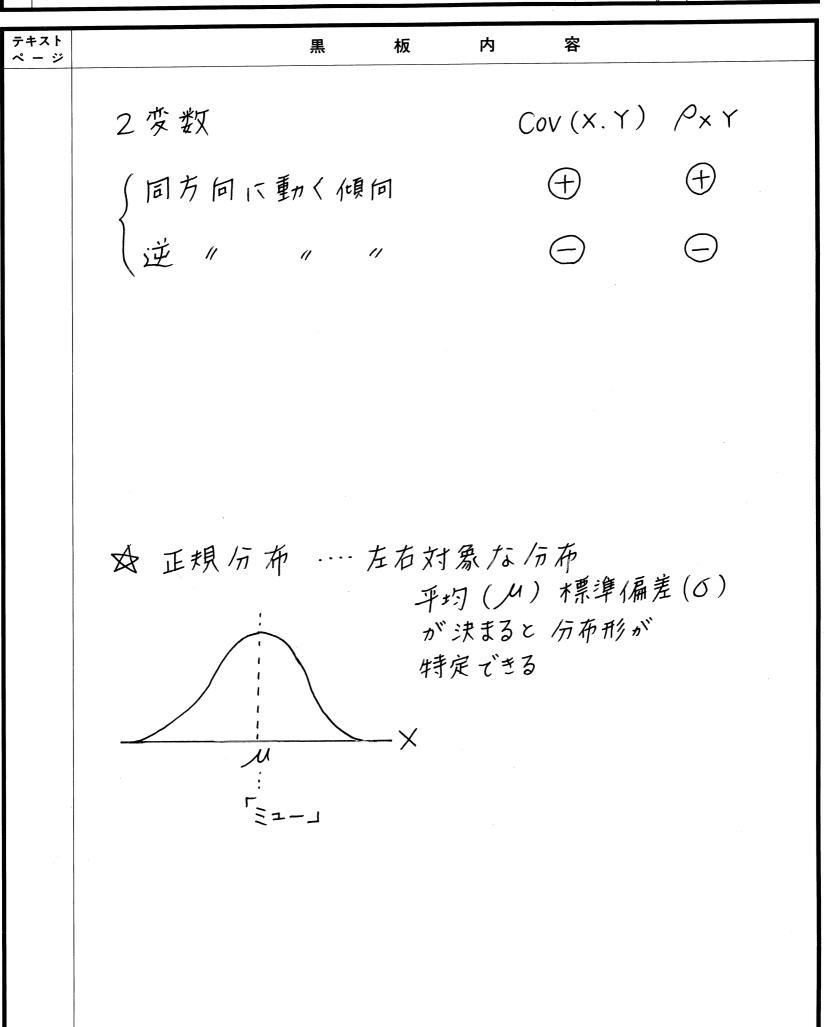
☆ 将来の収益率を予想するのに用いる数値

例) A 产土

景気 好沢 平常 不沢 確率 0.3 0.5 0.2

A社 収益率 40% /0% -30%

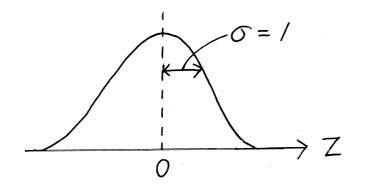
```
テキスト
                            内
                                 容
                      板
                 黒
         期待值…平均
     期待値=(名状態の×実現値)の后計
         E(RA) = 0.3 \times 40\%
                 + 0.5 × 10%
                  + 0.2 \times (-30\%)
                = //%
     ② 分散、標準偏差 --・バラツキを測る
         (a) 行散 = 名状態の×(実現値-期待値) 確率 の色
             G_A^2 = 0.3 \times (4.0 - 11)^2
                  +0.5 \times (10-11)^{2}
       小文字の
                  +0.2 \times (-30 - 11)^{2}
                 = 589 (\%^2)
```


## 証券アナリスト講義録 間 証券 / 次基本 ぬ / \*\*

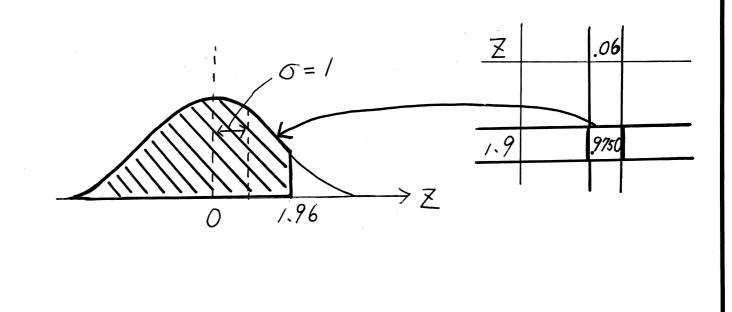
テキスト 容 黒 板 (b) 標準偏差=√分散 ÷ 24,3 (%) ボートフォリオ理論 {リターン … 期待値 リスク … 炉散 or 標準偏差

| 証券アナリス         | ſ =# <del>¥</del> △3 | 科 | 1    | 1- | - H 1- | 回 | d. |
|----------------|----------------------|---|------|----|--------|---|----|
| <b>証券</b> アナリス | <b>卜</b>             | 目 | 証券分析 | ス  | /次基本   | 数 |    |

| V AL | 竹物なし カカスト                                                                                                                            |
|------|--------------------------------------------------------------------------------------------------------------------------------------|
| テキスト |                                                                                                                                      |
| ページ  | 黒板内容                                                                                                                                 |
|      | (3) 共分散、相関係数…2数の相互関係                                                                                                                 |
|      | (Q)<br>共分散 = 名状態の×(×の<br>(実現値-期待値) × (Yの<br>(実現値-期待値) の合計<br>Cov(×.Y)                                                                |
|      | Question (P.10)                                                                                                                      |
|      | $Cav (RA, RB) = 0.3 \times (40 - 11) \times (0 - 7) + 0.5 \times (10 - 11) \times (20 - 7) + 0.2 \times (-30 - 11) \times (-15 - 7)$ |
|      | = //3                                                                                                                                |
|      |                                                                                                                                      |
|      | (b) 相関係数 = <u>×とYの共分散</u><br>×の Yの<br>標準偏差×標準偏差                                                                                      |
|      |                                                                                                                                      |
|      | '□─ <u></u>                                                                                                                          |
|      |                                                                                                                                      |
|      |                                                                                                                                      |
|      |                                                                                                                                      |
|      |                                                                                                                                      |
|      |                                                                                                                                      |


| 西己 | ★ミニテスト:あり [<br>★実力テスト:あり [<br>◇配布物なし | ] | なし | ★答 練:問題用紙・解答用紙・解答解説 | 講    | A 1- |
|----|--------------------------------------|---|----|---------------------|------|------|
| 布  | ★実力テスト:あり[                           | ] | なし | ★その他のレジュメ し         | 飾    | 金罗木  |
| 物  | ◇配布物なし                               |   |    | 54.5                | Hill | 先生   |




 テキスト
 黒板内容

 ページ

**標準正規分布** ··· {平均(N)=0 標準偏差(O)=/}の正規何布



例) Z≦1.96になる確率は?



| テキスト<br>ペ ー ジ |                                  | 黒                            | 板            | 内        | 容                   |
|---------------|----------------------------------|------------------------------|--------------|----------|---------------------|
| ベ <b>-</b> ジ  | Question                         |                              | O=/2.5       |          |                     |
|               | 平均かり                             |                              | 扁差           | ×<br>考える |                     |
|               | - 0% - 8%<br>- /2·5%<br>- 標準正規/i | 一0.65                        | <u>ر</u>     |          | Z .04<br>0.6 .7389  |
|               | -0.6× O                          | $\overline{}$ $\overline{2}$ | <u>←</u> → _ |          | 1-0.7389 $= 0.2611$ |
|               |                                  |                              |              |          |                     |

#### 1. 証券分析の基礎

- (1) 投資収益率
  - i) 投資収益率

#### 投資収益率

#### ii) 算術平均と幾何平均

ある証券のn期間の収益率が、

| 期   | 1     | 2     | • • • | n     |
|-----|-------|-------|-------|-------|
| 実現値 | $R_1$ | $R_2$ | • • • | $R_n$ |

という実績だったとすると、

①算術平均投資収益率= 収益率の合計 期数

$$\overline{R}_A = \frac{R_1 + R_2 + \dots + R_n}{n}$$

②幾何平均投資収益率・・・複利運用の結果を1期間あたりに均した収益率

$$\overline{R}_G = \sqrt[n]{\left(1 + R_1\right)\left(1 + R_2\right)\cdots\left(1 + R_n\right)} - 1$$

#### 証券分析(1次):証券分析の基礎

#### iii) 不確実性と基本統計量

① 期待値と分散(標準偏差)

証券 i の収益率 R (確率変数) が、

| 状態  | 1         | 2         | • • • | n         |                                                       |
|-----|-----------|-----------|-------|-----------|-------------------------------------------------------|
| 確率  | $p_1$     | $p_2$     | • • • | $p_n$     | $p_1 + p_2 + \dots + p_n = 1  (\sum_{s=1}^n p_s = 1)$ |
| 実現値 | $r_{i,1}$ | $r_{i,2}$ |       | $r_{i,n}$ |                                                       |

という分布に従うとすると、

#### 収益率の期待値・分散・標準偏差

①期待収益率=(状態ごとの確率×収益率の実現値)の合計

$$E[R_i] = p_1 r_{i,1} + p_2 r_{i,2} + \dots + p_n r_{i,n}$$

②分散={状態ごとの確率×(収益率の実現値-期待値)²}の合計

$$\sigma_i^2 = p_1 (r_{i,1} - E[R_i])^2 + p_2 (r_{i,2} - E[R_i])^2 + \dots + p_n (r_{i,n} - E[R_i])^2$$

③標準偏差=√分散

$$\sigma_i = \sqrt{\sigma_i^2}$$

1°ポートフォリオ理論では、リターンとリスクの関係が重要になるが

期待収益率・・・リターンの指標

分散・標準偏差・・・リスクの指標

として通常扱われる。

証券分析(1次):証券分析の基礎

#### ② 共分散と相関係数

2証券 A,B の収益率を  $R_A$ ,  $R_B$  (確率変数) が、

| 状態     | 1         | 2         |       | n         |                                                       |
|--------|-----------|-----------|-------|-----------|-------------------------------------------------------|
| 確率     | $p_1$     | $p_2$     | • • • | $p_n$     | $p_1 + p_2 + \dots + p_n = 1  (\sum_{s=1}^n p_s = 1)$ |
| A の収益率 | $r_{A,1}$ | $r_{A,2}$ | • • • | $r_{A,n}$ |                                                       |
| Bの収益率  | $r_{B,1}$ | $r_{B,2}$ | •••   | $r_{B,n}$ |                                                       |

という分布に従うとすると、

#### 共分散・相関係数

- ①共分散={確率× (Aの実現値-Aの期待値)× (Bの実現値-Bの期待値)} の合計  $Cov(R_A, R_B) = p_1(r_{A,1} E[R_A])(r_{B,1} E[R_B]) + \dots + p_n(r_{A,n} E[R_A])(r_{B,n} E[R_B])$
- ②相関係数= Aの標準偏差×Bの標準偏差

$$\rho_{A,B} = \frac{Cov(R_A, R_B)}{\sigma_A \sigma_B}$$

#### 1°2つの変数が、

同じ方向に動く傾向があるとき・・・共分散・相関係数はプラス 反対方向に動く傾向があるとき・・・共分散・相関係数はマイナス 互いに無関係な動きをするとき・・・共分散・相関係数はゼロ

2° 相関係数は-1以上1以下の数字をとる( $-1 \le \rho_{A,B} \le 1$ )。

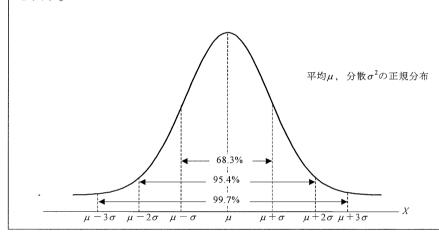
#### (2) 収益率の分布—正規分布

証券分析では、収益率の分布として正規分布が仮定されることが多い。

#### 正規分布

ある確率変数が正規分布に従うとき、

期待值(平均值)


分散 (標準偏差)

がわかれば、分布が特定できる。

確率変数Xが、平均 $\mu$ 、分散 $\sigma^2$ にしたがうとき、

$$X \sim N(\mu, \sigma^2)$$

と表す。



- ⇒「平均値から標準偏差いくつ分離れているか」がわかれば、
  - ・データが一定の範囲に入る確率
  - ・一定の確率で、データがどの範囲に入るか(信頼区間)

を求めることができる。

#### 標準化 (Z変換)

$$Z = \frac{\pi \sigma g$$
数  $-$ 平均値  $}{$ 標準偏差  $} = \frac{X - \mu}{\sigma}$ 

#### (3) 貨幣の時間価値

i) 単利と複利

利子率(年率)がrとすると、n年後には、元本額の何倍になるか?

①単利…元本のみが利子を生む。

元本額の1+nr (倍)

②複利…利子も利子を生む。

元本額の $(1+r)^n$  (倍) …年1回複利の場合

#### ii) 現在価値と将来価値

利子率/割引率(年率)がアとすると

①n年後の将来価値Fn

$$F_n = PV(1+r)^n$$

将来価值=現在価値×(1+利子率)<sup>年数</sup>

②現在価値 PV

$$PV = \frac{F_n}{\left(1+r\right)^n}$$

iii)内部収益率(IRR=internal rate of return)

$$I = \frac{CF_1}{1+r} + \frac{CF_2}{(1+r)^2} + \dots + \frac{CF_n}{(1+r)^n}$$

「投資額=その後のキャッシュフローの割引価値」を成立させる割引率 ア

iv) 正味現在価値(NPV=net present value)

$$NPV = \underbrace{\frac{CF_1}{1+r} + \frac{CF_2}{\left(1+r\right)^2} + \dots + \frac{CF_n}{\left(1+r\right)^n}}_{\substack{\pm + \gamma \neq 2, 2 \neq 1 = 0 \text{ only} } \text{lga} \text{fm} \text{ def}}_{\substack{\pm + \gamma \neq 2, 2 \neq 1 = 0 \text{ only} } \text{lga} \text{fm} \text{ def}}$$

(投資判断基準) NPV > 0 ⇒投資すべきである  $NPV \le 0$  ⇒投資すべきでない