講義録レポート

		講義録コード	<u>11-13-A-101-01</u>					
講座	証券アナリスト	科目①	証券分析					
目標年	2013年合格目標	科目②						
コース	1次対策・基本講義	回数	1 💷					
用途	■個別DVD ・ ■テープレクチャー ■WEB ・ □衛星 ・ ■カセ	【 ・ □集f ット通信 ・	合DVD ■DVD通信 · □資料通信					
収録日	2012 年	7	月 17 日					
講師名	鈴木 先生	講義録 枚数	1 1 枚 ※レポート 含まず					
神叫石	亚个 	補助レジュメ 枚数	5 枚 (^{サイズ})					
講義構成	講義(84)分 → 休	憩(10)分 → 講義(64)分					
	① 基本テキスト P. 1 ~ P. 19							
使用教材	② 問題集 P. ~ P.							
设用 教例	③ 例題集 P. ~ P.							
	有·無							
配布物	① 基本テキスト、問題集、例題集							
自61月初								
正誤表	<u>有</u> . 無 枚							
備考								

証券分析 是次対策 基本講義

★実力テスト:あり[◇配布物なし

なし なし

練:問題用紙・解答用紙・解答解説 ★その他のレジュメ「

証券分析 (180)

1. 証券市場の機能と仕組み(15)

2. ファンダメンタル分析

3. 株式 分析 (30) 4. 債券 分析 (35) 5. デリバティフ" 分析 (30) 分析(30)

6. ポートフォッオ・マネジメント (40)

(今回のポイント)

- ◎過去の収益率の平均 算術/一幾何平均
- ◎将来の収益率について見る方法 期待值/分散/標準偏差/ 共分散/相関係数
- ◎正規分布

自証券分析

| 次対策| 基本講義

数

配 布 物 ★実力テスト:あり[

なし ★答 なし ★その他

★答 練:問題用紙・解答用紙・解答解説 ★その他のレジュメ []

講

鈴木

◇配布物なし

インカムー・配当 + (売却額-購入額) 投資額

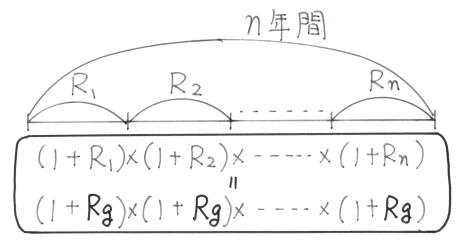
Question (P.2)

収益率 =
$$\frac{5,000 + (480,000 - 400,000)}{4,00,000}$$

= $0.2/25 = 21.25\%$

◎算術平均と幾可平均

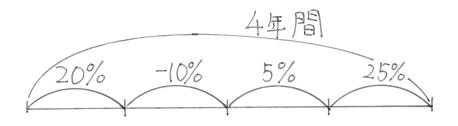
*幾何平均一複利計算を前提に 各期間にならしたもの


科 記券分析 7 其本講義

★実力テスト:あり[◇配布物なし

なし なし

練:問題用紙。解答用紙。解答解説 ★その他のレジュメ [


テキスト ページ

$$(1+R_2)^n = (1+R_1)(1+R_2) - (1+R_n)$$

$$|+Rg| = \{(1+R_1)(1+R_2) - \cdots (1+R_n)\}^{\frac{1}{n}}$$

Question (P.4)

算術平均 =
$$\frac{20\% + (-10\%) + 5\% + 25\%}{4}$$

科 証券分析 7 基本講義

★ミニテスト:あり[★実力テスト:あり[◇配布物なし

なし 練:問題用紙。解答用紙。解答解説 なし ★その他のレジュメ [

鈴木

テキスト ページ 20% -10% 5% 25% $(1+0.2) \times (1-0.1) \times (1+0.05) \times (1+0.25)$ $(1+R_g)(1+R_g)(1+R_g)(1+R_g)$ $(1+Rg)^4 = 1.2 \times 0.9 \times 1.05 \times 1.25$ 1.4/75 1 + Rg = 1.4/75 + (= 4)1.4/75一条 4乗根 15 = 1.0911 ---Rg = 0.0911 --- = 9.1%

証券アナリスト講義録量証券分析

コールスリポース基本講義 1次对策

★実力テスト:あり[

練:問題用紙。解答用紙。解答解説] なし ★その他のレジュメ [

金木

テキスト 内 容 ページ

◎将来の収益率を見るための指標

何

<u>状態 好況 平常 不況</u> 確率 0.3 0.5 0.2

A社权益率 40% 10% -30%

①期待值 --- 平均

期待值 = (各狀態の E[O] (確率 ×実現値)の合計

A社の期待収益率

$$E(R_A) = 0.3 \times 40\%$$

+ 0.5 × /0%
+ 0.2 × (-30%) = 11%

計記券分析

コース対策本講義

★ミニテスト:あり[★実力テスト:あり[

なし なし

練:問題用紙・解答用紙・解答解説 ★その他のレジュメ [

鈴木

◇配布物なし

テキスト 板 内 容 ページ

②分散 標準偏差 --- バラッキを測る

分散 = {各状態の×(実現値-期待値)²)の合計

Aの分散

$$\begin{aligned}
\sigma_{A}^{2} &= 0.3 \times (40\% - 11\%)^{2} \\
&+ 0.5 \times (10\% - 11\%)^{2} \\
&+ 0.2 \times (-30\% - 11\%)^{2} \\
&= 589(\%^{2})
\end{aligned}$$

標準偏差 = 人分散

小文字の「シグマ」

Aの標準偏差

$$\sigma_{A} = \sqrt{589}$$
 $= 24.3(\%)$

訂於分析

★ミニテスト:あり「 ★実力テスト:あり〔 なし

練:問題用紙・解答用紙・解答解説

なし ★その他のレジュメ「 ◇配布物なし

目言正券分析

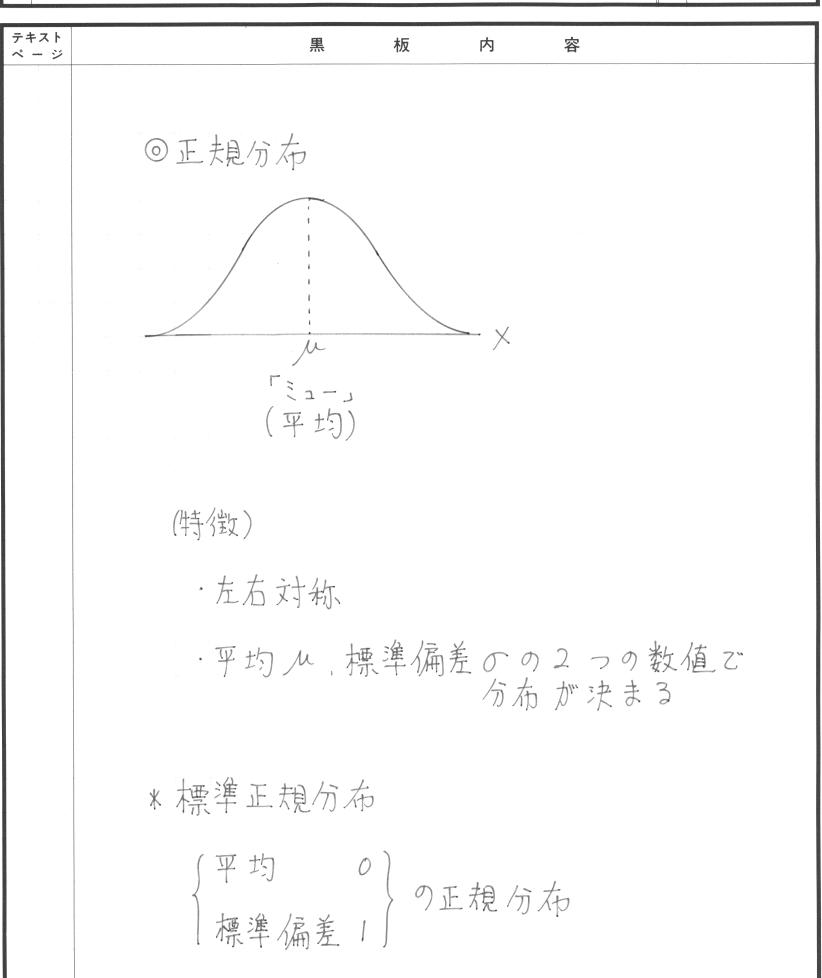
1次対策 基本講義

回数

配布物

★ミニテスト:あり [★実力テスト:あり [◇配布物なし] なし] なし ★答 練:問題用紙・解答用紙・解答解説 ★その他のレジュメ []

講


金命未先生

テキスト ペ ー ジ	黒板内容
:	0 京 米 加
	2 変数が 共分散
	同方向に動人和負向
	無関係 " 0
	¥ 11 11 11
	②相関係数 = 共分散 メックの 標準偏差 標準偏差
	O Cov (X, Y)
	P T D - J

科 証券分析 显 上次对的 基本講

★ミニテスト:あり[★実力テスト:あり [なし

練:問題用紙・解答用紙・解答解説 なし ★その他のレジュメ [◇配布物なし

計証券分析

内

容

コーン次対策

回 数

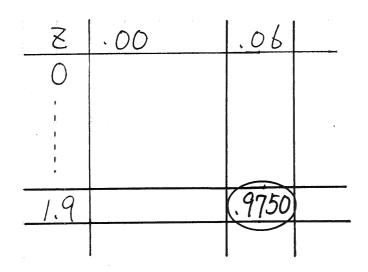
講 ハヘ \

★ミニテスト:あり [なし ★実力テスト:あり [なし

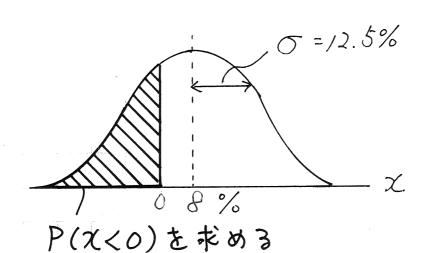
] なし ★答 練:問題用紙・解答用紙・解答解説] なし ★その他のレジュメ []

板

師


◇配布物なし

テキスト


ページ			711.4	1,75			
	i i i i i i i i i i i i i i i i i i i		,		3	,	
			1				
er e		:		- T= 1			

0 1 1.96 2

と≦1.96の確率 P(Z≦1.96) =0.9750

Question (P.16)

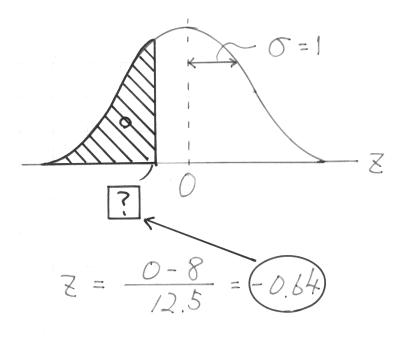
自言正券分析

テキスト

ページ

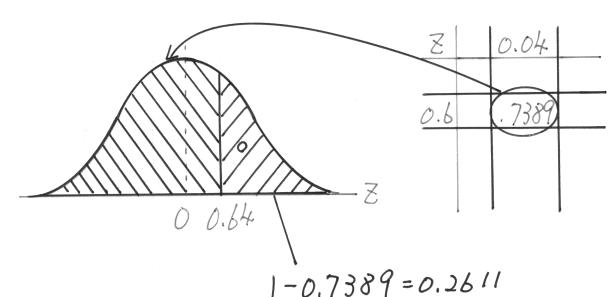
★ミニテスト:あり [★実力テスト:あり[なし なし

練:問題用紙・解答用紙・解答解説 ★その他のレジュメ [


内

容

◇配布物なし


板

標準正規分布に変換する

z = <u>χ-ル</u> 標準化

(平均から 標準偏差いくつ分 離れているかを 見るための式)

0. 証券分析とポートフォリオ・マネジメントの概要

◆ 学習内容と本試験での出題状況

証券分析(1次):証券分析の概要

TAC 基本テキスト	本試験(大問 6 問、小問 100 問前後、180 分)
1 証券分析の基礎	(第2~6問、特に、第6問 ポートフォリオ・マネジメント)
2 債券分析	第4問 債券分析(35点)
3 ファンダメンタル分析	第2問 ファンダメンタル分析 (30点)
4 株式分析	第3問 株式分析(30点)
5 デリバティブ分析	第 5 問 デリバティブ分析 (30 点)
6 ポートフォリオ・マネジメント	第6問 ポートフォリオ・マネジメント(40点)
7 証券市場の機能と仕組み	第1問 証券市場の機能と仕組み(15点)

◆ 特色

- □ 解答形式: 4 肢ないし5 肢択一のマークシート方式
- □ 問題量:試験時間 180 分で大問 6 問・小問 100 問前後と、問題数はかなり多い。
- □出題分野
 - ▶ 出題範囲が広く、かなり異なった分野からの広範に出題されている。
 - ・理論的・数理的傾向の強い分野: 債券分析、デリバティブ分析、ポートフォリオ・マネジメント、株式分析
 - ・2次コーポレート・ファイナンスと企業分析と関連性の強い分野: ファンダメンタル分析、株式分析
 - ・歴史的(または制度的)性格の強い分野:証券市場の機能と仕組み

□出題内容

- ▶ 計算問題がかなり多い。本試験では電卓の持込が許されており、電卓の処理の巧拙が合否に多大な影響を与える。
- □ 出題テーマ・新傾向問題
 - ▶ 出題範囲は広範にわたり、かなりの部分は既出かつ頻出の論点。

◆ 合格水準

➤ 正解率:60%弱(とはいっても、60%強以上は目指しておいたほうが確実、かつ2 次合格にも近道です)

1. 証券分析の基礎

- (1) 投資収益率
- i) 投資収益率

投資収益率

投資収益率=
$$\frac{+ r \, \mathcal{C} \, \beta \, \mathcal{N} \cdot \mathcal{C} \, \mathcal{C} \, (\text{or} \, \square \, \mathcal{X}) \, + \mathcal{C} \, \mathcal{D} \, \mathcal{L} \cdot \mathcal{C} \, \mathcal{C} \, \mathcal{C}}{ 購入価格}$$

$$R = \frac{\left(P_1 - P_0\right) + D_1}{P_0}$$

$$R = \frac{(P_1 - P_0) + D_1}{P_0}$$
$$= \frac{P_1 + D_1}{P_0} - 1$$

ii) 算術平均と幾何平均

ある証券のn期間の収益率が、

期	1	2	• • •	n
実現値	R_{1}	R_2	• • •	R_{n}

という実績だったとすると、

①算術平均投資収益率=<mark>収益率の合計</mark> 期数

$$\overline{R}_A = \frac{R_1 + R_2 + \dots + R_n}{n}$$

②幾何平均投資収益率・・・複利運用の結果を1期間あたりに均した収益率

$$\overline{R}_G = \sqrt[n]{(1+R_1)(1+R_2)\cdots(1+R_n)} - 1$$

証券分析(1次):証券分析の基礎

iii) 不確実性と基本統計量

① 期待値と分散(標準偏差)

証券iの収益率Ri(確率変数)が、

状態	1	2	• • •	n	
確率	p_1	p_2	•••	p_{n}	$p_1 + p_2 + \dots + p_n = 1 (\sum_{s=1}^n p_s = 1)$
実現値	$r_{i,1}$	$r_{i,2}$	• • •	$r_{i,n}$	

という分布に従うとすると、

収益率の期待値・分散・標準偏差

- ①期待収益率=(状態ごとの確率×収益率の実現値)の合計 $E[R_i] = p_1 r_{i,1} + p_2 r_{i,2} + \cdots + p_n r_{i,n}$
- ②分散={状態ごとの確率× (収益率の実現値-期待値) 2} の合計 $\sigma_i^2 = p_1 \big(r_{i,1} E[R_i]\big)^2 + p_2 \big(r_{i,2} E[R_i]\big)^2 + \dots + p_n \big(r_{i,n} E[R_i]\big)^2$
- ③標準偏差= $\sqrt{分散}$ $\sigma_i = \sqrt{\sigma_i^2}$
- 1°ポートフォリオ理論では、リターンとリスクの関係が重要になるが 期待収益率・・・リターンの指標 分散・標準偏差・・・リスクの指標 として通常扱われる。

証券分析(1次):証券分析の基礎

② 共分散と相関係数

2証券 A,B の収益率を R_A , R_B (確率変数) が、

状態	1	2	•••	n	
確率	p_1	p_2	•••	p_n	$p_1 + p_2 + \dots + p_n = 1 (\sum_{s=1}^n p_s = 1)$
Aの収益率	$r_{A,1}$	$r_{A,2}$	• • •	$r_{A,n}$	
Bの収益率	$r_{B,1}$	$r_{B,2}$	• • •	$r_{B,n}$	

という分布に従うとすると、

共分散·相関係数

- ①共分散={確率× (Aの実現値−Aの期待値) × (Bの実現値−Bの期待値)} の合計 $Cov(R_A,R_B)=p_1\big(r_{A,1}-E\big[R_A\big]\big)\big(r_{B,1}-E\big[R_B\big]\big)+\dots+p_n\big(r_{A,n}-E\big[R_A\big]\big)\big(r_{B,n}-E\big[R_B\big]\big)$
- ②相関係数= $\frac{A \ge B の 共分散}{A の標準偏差×B の標準偏差$

$$\rho_{A,B} = \frac{Cov(R_A, R_B)}{\sigma_A \sigma_B}$$

1°2つの変数が、

同じ方向に動く傾向があるとき・・・共分散・相関係数はプラス 反対方向に動く傾向があるとき・・・共分散・相関係数はマイナス 互いに無関係な動きをするとき・・・共分散・相関係数はゼロ となる。

 2° 相関係数は-1 以上 1 以下の数字をとる $(-1 \le \rho_{AB} \le 1)$ 。

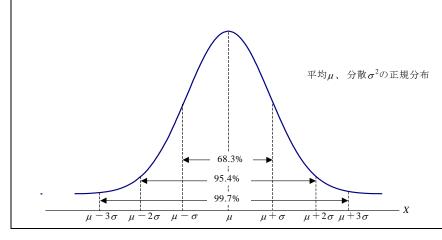
(2) 収益率の分布—正規分布

証券分析では、収益率の分布として正規分布が仮定されることが多い。

正規分布

ある確率変数が正規分布に従うとき、

期待值(平均值)


分散 (標準偏差)

がわかれば、分布が特定できる。

確率変数 X が、平均 μ 、分散 σ^2 にしたがうとき、

$$X \sim N(\mu, \sigma^2)$$

と表す。

- ⇒「平均値から標準偏差いくつ分離れているか」がわかれば、
 - ・データが一定の範囲に入る確率
 - ・一定の確率で、データがどの範囲に入るか(信頼区間)

を求めることができる。

標準化 (Z変換)

$$Z = \frac{元の変数 - 平均値}{標準偏差} = \frac{X - \mu}{\sigma}$$