
講義録レポート

11-13-A-201-01 講義録コード 証券アナリスト 証券分析 講座 科目① 2013年合格目標 目標年 科目(2) 回数 回 1次対策・速修講義 ・ **■**テープレクチャー □集合ビデオ ■個別DVD 用 涂 ■WEB • □衛星 • ■カセット通信 • ■DVD通信 □資料通信 2012 年 28 日 収録日 8 月 枚 ※レポート 講義録 1 4 含まず 枚数 山岡 先生 講師名 サイズ 補助レジュメ 17 枚 枚数 講義 (21)分 → 講義 (15)分 → 講義 (15)分 → 講義 (18)分 講義 (13)分 → 講義 (6)分 → 講義 (5)分 講義構成 ① 基本テキスト P. 1 ~ P. 2 7 ② 問題集 **∼** P. Ρ. 使用教材 ③ 例題集 Р. · 無 ① 基本テキスト、問題集、例題集 配布物 ② 進度予定表(講義録 添付) 3 <u>有___</u>・ 正誤表 枚 備考

証券アナリスト講義録 目 証券分析 コリ次対策 四 / 変修講義 数 /

配布物	★ミニテスト:あり [★実力テスト:あり []	なし なし	★答 練:問題用紙・解答用紙・解答解説 ★その他のレジュメ [講山川	山岡	
物	◇配布物なし				師		先生

証券アナリスト講義録 目証券分析 コル対策 回 /

西己	★ミニテスト:あり []	なし	★答 練:問題用紙・解答用紙・解答解説	講		
配布物	★実力テスト:あり[]	なし	★その他のレジュメ[]		山岡	
物	◇配布物なし				師		先生

		尤
テキスト ページ	黒板内容	
	投資収益率の計算 (f.問題集:問題1-1 問1 ※ 株式)	
	(京却価格 - 購入価格) + 配当金 開入価格 投資額	
	「株式とは」 cf. テキスト P.140 配当金株主の出質に対して企業の利益の一部的 支払からいかば「報動性」	

証券アナリスト講義録 料 証券分析 引 次対策 回 /

VHL1	形物なし 先生 一般ない 一般ない
テキストペー ジ	黒板内容
	過去のデータの平均(テキストP.3 L ジュ×P.1) ①算術平均 R _A = // × (R ₁ + R ₂ + + R _N) 問題1-1問3 年数 1年12年 N年1
	②幾何平均 $R_G = \int (1+R_1) \times (1+R_2) \times \cdots \times (1+R_N) - 1$ $= \left\{ \frac{N}{T} (1+R)^{t} \right\}^{\frac{1}{N}} - 1$ $t=1$
	※ルト・キー(通常の電卓)2乗根 [1回(***) 1回(***) 1回(***) 4乗根4丁→4=2 ¹ [2回) 8乗根8丁→8=2 ³ [3回)

証券アナリスト講義録 目 証券分析 コ | 次対策 回 / 上上修講義 図 /

和	★ミニテスト:あり [なし	★答 練:問題用紙・解答用紙・解答解説	講		
布	★ミニテスト:あり [★実力テスト:あり [◇配本物か!	なし	★その他のレジュメ[]		山岡	
物	◇配布物なし			師	先	も生

テキスト ペ ー ジ		黒	板	内	容
		慢(L汽) ·①期待(V ·②分散	×P.3) 道(期代 ariance Var(R	射⁄益率) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	客 E[R] Expected value ギリシャ文字 Greeks ローマ字の S s (大文字 Z・1文字 C)
	2証券/関係· (X、Y)		Cov	(Rx.RY)	、Covx.y、Oxy 1-, ギリシャ文字 ローマ字のか(小文字)

スト		 黒 板	内		
	サロバナル・米 次				
	期待收益率				
	証券A				
	景気の状態	、 (生起)在	在率 各状	況の収益率(R)
	好況	30;		+/5%	
	普通	50%	%	+ 6%	
	不況		%	-/5%	
	合計	(00)	% ELRA]…証券Aの収	一位学の
	•	,		期行	节值
	→確率で	加連平均す	3		
	E[RA]=	= 0.3×(+/5%	(s)+0.5×(+6%	()+ <u>0.2</u> ×(-15%)	=4.5%
		galantinosis (,		••••
				•	

目 証券分析 显 次对策 图 速修講義 数

テキスト ページ		黒	板	内	
	ミュ炎り				
	証券B				
	景気の状態	是 確認		仅益率(R)	
	好況	30%	6	-40%	
	普通	50	0	+20%	
	不決	20%	6	+80%	
	合計	(00%	2/0	ELRB)	
	E[RB] = <u>0.</u>	<u>3</u> ×(-40%))+ <u>0.5</u> ×	(+20%)+ <u>(</u>).2×(+80%)=14%
	→牧益率の	分布しシュメ	P.4	正券Bohが	ばらった(散らばり)大きい?
					→リスク
	②分散(Vai	riance)···	(ずらつき	具合(リスク	7)
	景気の状態	福率	<u>}</u>	证券A	証券B
	好況	30%	0.3×1	(+0.15 -0.045)	2 0.3×(-0.4-0.14) ²
	普通	50%	0.5x	(+0.06 -0.045) ²	2 0.5×(+0.2 -0.14)2
	不況	_	<u>0.2</u> ×	(0.15 -0.045)	0.2×(+0.8-0.14)2
		ŕ		偏差2	
	合計	100%	=	0.011025	= 0.1764
				σ_{A^2}	$\langle OB^2 \rangle$
					·

科言正券分析

] |次列策 | 回 | 速修講義 | 數 /

先生

献 ★ミニテスト:あり [布 ★実力テスト:あり [

] なし] なし ★答 練:問題用紙・解答用紙・解答解説 ★その他のレジュメ []

内

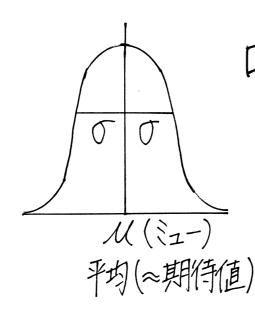
講

山岡

◇配布物なし

テキスト

ページ


③標準偏差 (Standard Deviation)

收益率の分布···正規分布を仮定(L汽ンP.5~6)

板

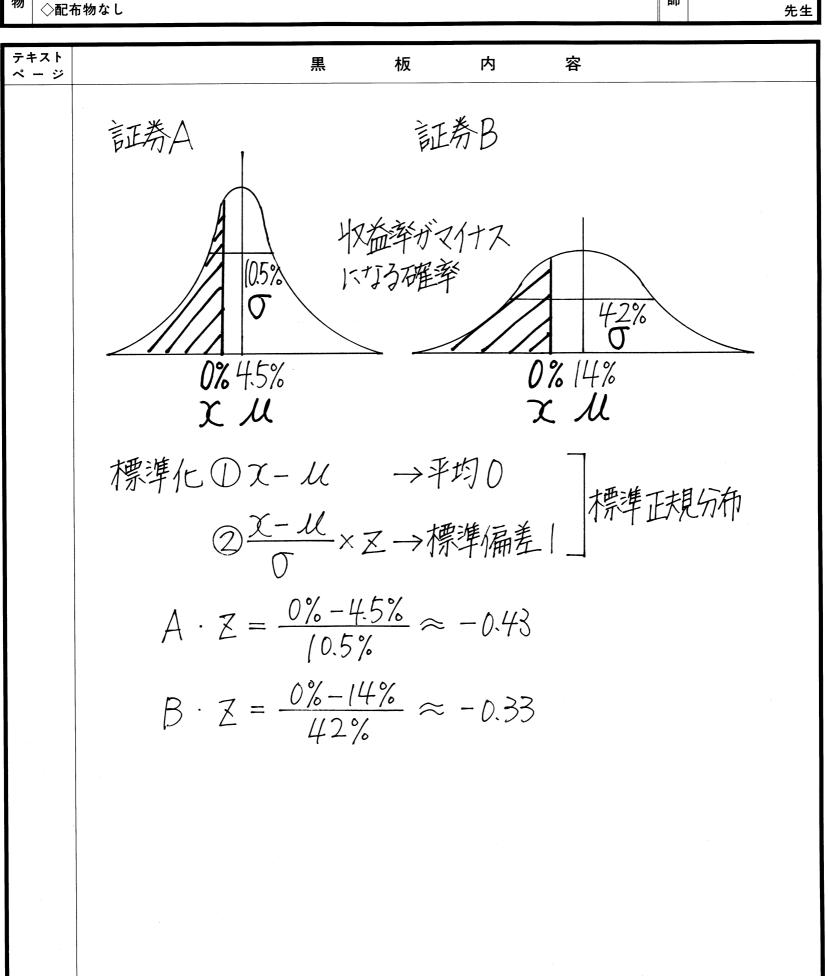
→ 野冬中心が存在対称のフリ鐘型の (連続型) 確率分布

容

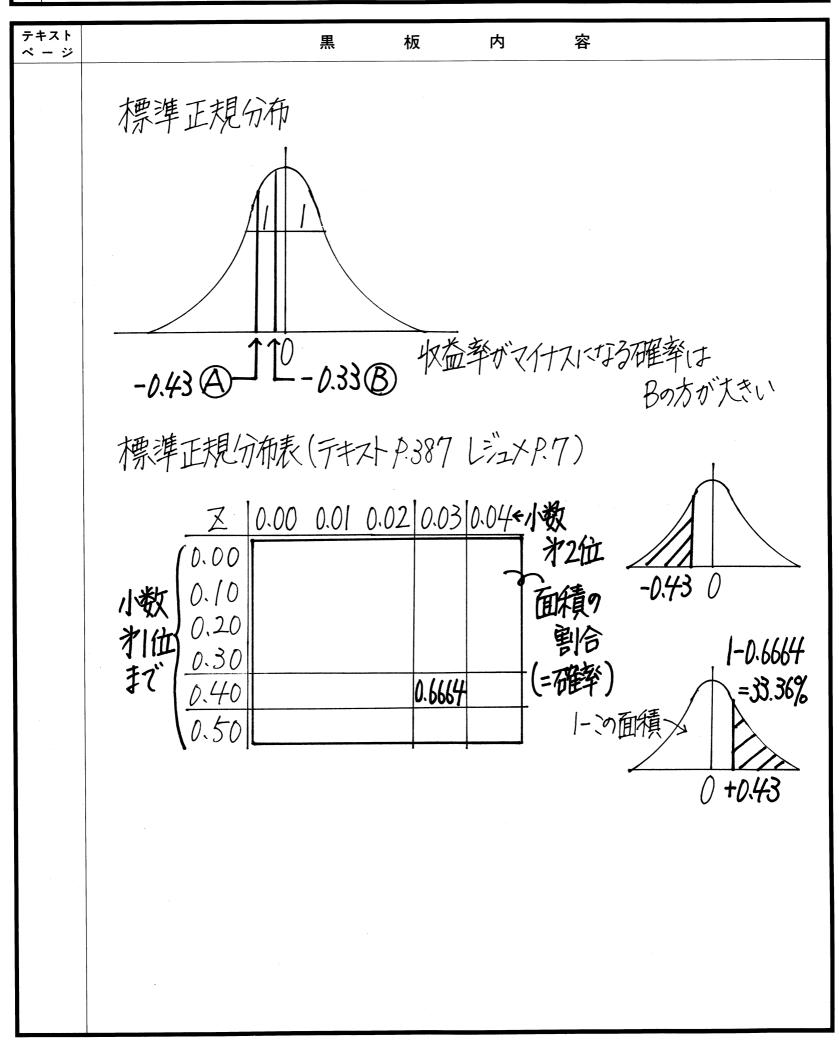
11-11270-19-> (A) 105% 42% (B)

証券分析

コノ次列外ス速修講義


★ミニテスト:あり[★実力テスト:あり[

なし なし


練:問題用紙・解答用紙・解答解説 ★答 ★その他のレジュメ〔

山岡

先生

証券アナリスト講義録 | 証券分析 1 次対策 | 2 次対策 | 2 次が策 | 2 次が策 | 2 次が策 | 2 次が等 | 2 次が策 | 2 次が影響を | 2 次が策 | 2

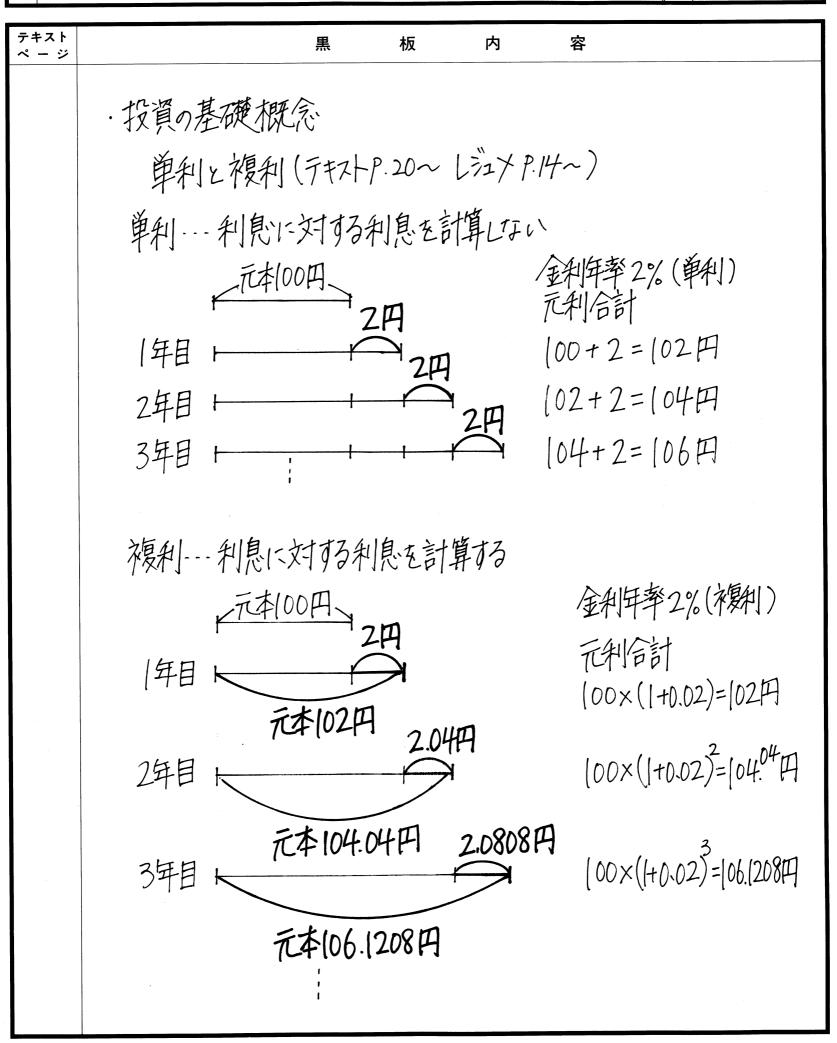
目言正券分析

コース対策の

/

テキスト ペ ー ジ	黒板内容
	2証券の関係(レジュメ P.8)
	(4) 共分散(Covariance)
	景気の状態 確率 証券A 証券B
	女子 況 0.3 × (0.15-0.045) × (-0.4-0.14)
	普通 0.5 × (0.06-0.045) × (0.2-0.14)
	不现 0.2 × (0.15-0.045)× (0.8-0.14)
	合 計 (00% = <u>⊙0.0423</u> ←GovA.B
	→共分散をそれぞれの標準偏差で割る(標準化)
	$\frac{CovA.B}{\sigma_A \sigma_B} = \frac{-0.0423}{0.105 \times 0.42} \approx -0.96 \leftarrow 相関係数 \rho_{A.B}$
·	

証券アナリスト講義録 | 証券分析 コリ次対策 | 1 上後講義 | 1 | 上修講義 | 2 | |

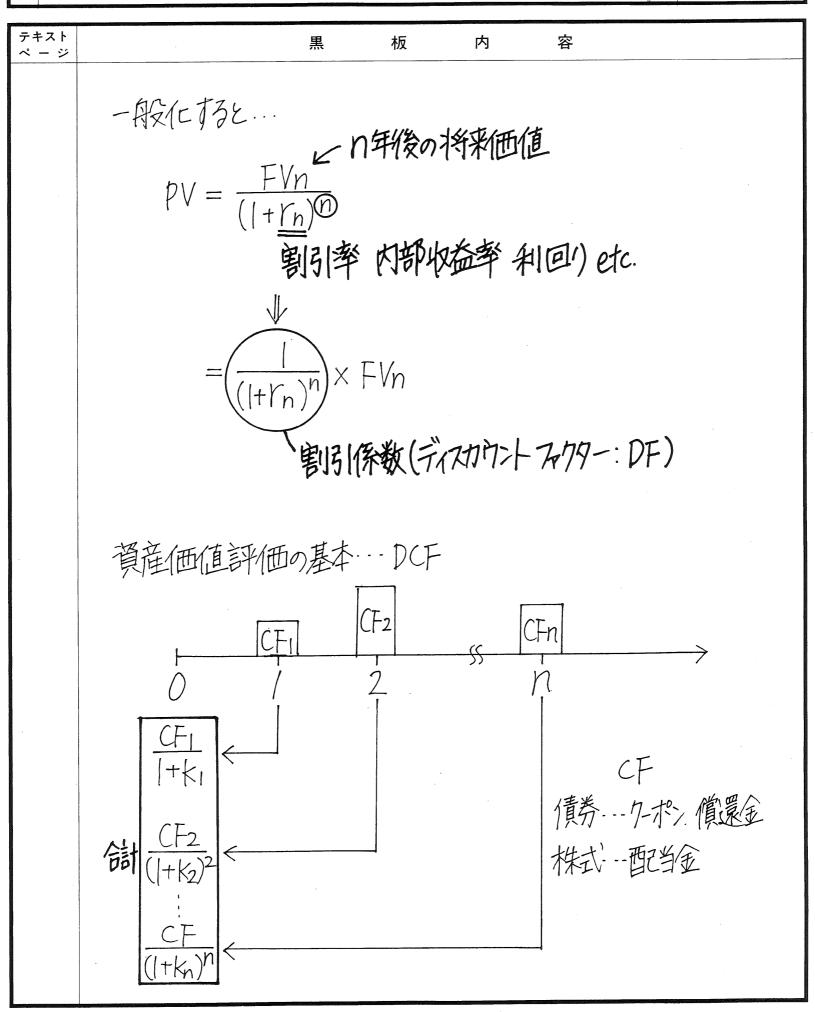

配布物	★ミニテスト:あり [★実力テスト:あり [7	なしなし	★答 ★そのf	練:問題用紙・解答用紙・ 他のレジュメ [解答解説	講師	山岡	##
790	◇配布物なし						Hilt		先生

◇配布	物なし 	先生
テキスト ページ	黒板内容	
	⑤相関係数(L汽ン/P.9)	
	$\rho: \underline{-1} \leq \rho \leq \underline{+1}$	
		的何啊(何何)
	証券AとBの収益率の相関係数=-0.96 (1907) 強い(列発相関に近り
	· オ6章 ポートなりホマネジントの音編→cf. し泣×P.	10~12 相関係数
		7里安
	·例題集P.1 H16 节5間(工)問3標準偏差 平均	9值」算術平均を
	· 電卓の使い方(計算例)→ Cf. Lラユメ P. 13	197.
	E7010 (014101)) (). [). [). [)	

計談券分析

1次対策 回速修講義 数

/


目言正券分析

7月次対策 建修講義

回 数

テキスト ページ	黒板内容
	現在価値(PV) <u>複利</u> 計算を前提に
	元本 (00円 金利年率 2% (複利) 2年間運用
	現在 1年後 2年後 $(00 \text{ (00 H)} \times (1+0.02))^2$ $= (02 \text{ H)} = (04.04 \text{ H})$
	現在価値 PV FV2
	現在 (00円→(1+0.02) ² → (04.04円 (PV) 全利 (FV ₂)
	利3率利回()
	(割引)現在(面值 $\angle FV_2$ $\boxed{000 \text{ (1+0.02)}^2}$ $\boxed{1999}$

証券アナリスト講義録料証券分析は対策回対連修講義数/

1. 投資収益率の計算

投資収益率 (R)

e.g.) 証券X

担左の歴年	1年後	
現在の株価	株価	配当金
1,000円	1,040円	20円

$$R_X = \frac{(1,040 - 1,000) + 20}{1,000} = \frac{1,060 - 1,000}{1,000} = 0.06 = 6\%$$

※) 過去のデータの平均について

過去の多期間(1期~N期)にわたる投資収益率の平均値の計算方法(算術平均と幾何平均)

① 算術平均

$$\overline{R}_{A} = \frac{1}{N} \sum_{t=1}^{N} R_{t} = \frac{1}{N} (R_{1} + R_{2} + ... + R_{N})$$

② 幾何平均

$$\overline{R}_{G} = \left\{ \prod_{t=1}^{N} \left(1 + R_{t} \right) \right\}^{\frac{1}{N}} - 1 = \sqrt[N]{\left(1 + R_{1} \right) \times \left(1 + R_{2} \right) \times ... \times \left(1 + R_{N} \right)} - 1$$

	1年目	2年目	3年目	4年目
投資収益率	20.0%	-10.0%	5.0%	25.0%

平均投資収益率の計算)

①算術平均

$$\overline{R}_{A} = \frac{1}{N} (R_{1} + R_{2} + ... + R_{N}) = \frac{1}{4} \times \{20.0\% + (-10.0\%) + 5.0\% + 25.0\%\} = \frac{1}{4} \times 40.0\%$$

$$= 10.0\%$$

②幾何平均

$$\begin{split} \overline{R}_G &= \sqrt[N]{\left(1+R_1\right)\times\left(1+R_2\right)\times\ldots\times\left(1+R_N\right)} - 1 = \sqrt[4]{\left(1+0.20\right)\times\left(1-0.10\right)\times\left(1+0.05\right)\times\left(1+0.25\right)} - 1 \\ &= \sqrt[4]{1.4175} - 1 \\ &= 0.09114... \approx 9.1\% \end{split}$$

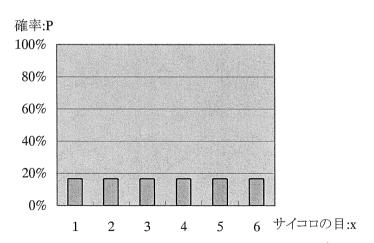
通常の電卓の場合、4乗根 $(\sqrt[4]{})$ の計算はルートキー $\sqrt{2}$ を2回叩いて下さい.

2. 確率,確率変数,確率分布

確率とは、ある事象が起こる確からしさを数量的に表したもの.

e.g.) (普通の)サイコロの目の出方

確率 (P:Probability)


1の目の出る確率 (P_1) : 1/6 2の目の出る確率 (P_2) : 1/6 : $P_1 + P_2 + P_3 + P_4 + P_5 + P_6$: $\frac{6}{2}$

10の目の出る確率 (P₁₀): 0

サイコロを振って出る目の数をxとすると, xは1から6までのいずれかの値になりますが、事前(振る前)にはその値はわかりません。事前にわかっていることは...

- 出る目は1以上6以下の整数
- それぞれの目が出る確率は 1/6
- 1~6 のいずれかの目が出る確率は 1/6×6=1 (=100%)

 \Rightarrow この場合,①x は一種の変数,②どの値がどの程度の可能性で出るかは確率 このような変数 x を確率変数,実際に現れた値(サイコロを振って実際に出た目)を実 現値といいます.そして,確率変数の実現値に確率を対応させたもの全体を確率分布といいます.

- (1) 確率 (P_i) ある事象 i が起こる可能性を 0 から 1 の間の数値で表したもの $(P_i:0 \le P_i \le 1)$
- (2) 確率変数 (xi) 確率に対応している変数
- (3) 確率分布 確率変数の実現値 (x_i) に確率 (P_i) を対応させたもの全体

3. 基本統計量

(1) リターン

① 期待値(期待収益率): E[R]

(2) リスク

②分散: σ^2 , var(R)

③標準偏差:σ

(3) 2証券の関係

④共分散: $Cov_{X,Y}$, $Cov(R_X,R_Y)$, $\sigma_{X,Y}$

⑤相関係数:ρ_xy

(1) リターン

① 期待リターン(収益率の期待値)

証券A (買おうか?)

今後1年間の景気見通しについて...

景気の状態	確率 (P)	各状況における投資収益率
好 況	30%	+15%
普通	50%	+6%
不況	20%	-15%
合 計	100%	???

??? =
$$0.3 \times (+15\%) + 0.5 \times (+6\%) + 0.2 \times (-15\%)$$

= $+4.5\%$
= $E[R_A]$

証券 A の収益率の期待値(期待収益率)

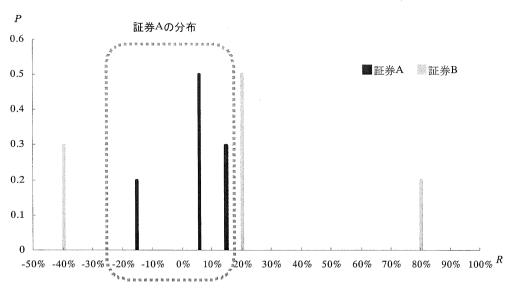
期待值 $E[R_x]$:Expected Value

$$E[R_X] = (P_{\text{Fire}} \times R_{X,\text{Fire}}) + (P_{\text{fire}} \times R_{X,\text{fire}}) + (P_{\pi_{\mathcal{R}}} \times R_{X,\pi_{\mathcal{R}}})$$

= (各状況の起きる確率×各状況における投資収益率)の合計

※ 「期待値」という用語は平均値とほぼ同義に用いられますが、データの平均は期待値と呼びません.

● 証券 A に加えて証券 B への投資を考えます.


景気の状態	確率 (P)	各状況における投資収益率		
泉刈り仏態	唯学(P)	 証券 A	証券 B	
好 況	30%	+15%	-40%	
普通	50%	+6%	+20%	
不 況	20%	-15%	+80%	
合 計	100%	+4.5%	$E[R_B]$	

$$E[R_B] = 0.3 \times (-40\%) + 0.5 \times (+20\%) + 0.2 \times (+80\%)$$

= +14%

とりあえず、リターン(期待収益率)は証券Aよりも高いのですが...

(2) リスク

● 確率分布

証券Aと証券Bを比較してみると、グラフからは証券Bの方が分布のばらつきは何となく、大きそうな「感じ」がします(しませんか?).

② 分散(期待値からのばらつき)

景気の状態	確率 (P)	証券 A	証券 B
好 況	30%	$0.3 \times (+0.15 - 0.045)^2$	$0.3 \times (-0.40 - 0.14)^2$
普通	50%	$0.5 \times (+0.06 - 0.045)^2$	$0.5 \times (+0.20 - 0.14)^2$
不況	20%	$0.2\times(-0.15-0.045)^2$	$0.2 \times (+0.80 - 0.14)^2$
	100%	=0.011025	=0.1764

証券 A の分散
$$\sigma_A^2 = 0.3 \times (+0.15 - E[R_A])^2 + 0.5 \times (+0.06 - E[R_A])^2 + 0.2 \times (-0.15 - E[R_A])^2$$
$$= 0.3 \times (+0.15 - 0.045)^2 + 0.5 \times (+0.06 - 0.045)^2 + 0.2 \times (-0.15 - 0.045)^2$$
$$= 0.011025$$
証券 B の分散
$$\sigma_B^2 = 0.3 \times (-0.40 - E[R_B])^2 + 0.5 \times (+0.20 - E[R_B])^2 + 0.2 \times (+0.80 - E[R_B])^2$$
$$= 0.3 \times (-0.40 - 0.14)^2 + 0.5 \times (+0.20 - 0.14)^2 + 0.2 \times (+0.80 - 0.14)^2$$
$$= 0.1764$$

分散
$$\sigma_X^2$$
, $var(R_X)$: variance
$$\sigma_X^2 = \sum_i P_i (R_{X,i} - E[R_X])^2 = E[(R_{X,i} - E[R_X])^2]$$
 z のケースでは...
$$\sigma_X^2 = P_{H\Re} \times (R_{X,H\Re} - E[R_X])^2 + P_{\#\#} \times (R_{X,\#\#} - E[R_X])^2 + P_{R\Re} \times (R_{X,R\Re} - E[R_X])^2$$

$$= \begin{bmatrix} \text{各状況の起きる確率} \times (\text{各状況における投資収益率} - 期待収益率})^2 \end{bmatrix} \text{の合計}$$

③ 標準偏差

ばらつき具合を表す統計量として分散の平方根をとったものを確率変数 \mathbf{x} の**標準偏差** (standard deviation) といい, $\sigma_{\mathbf{x}}$ などで表します.

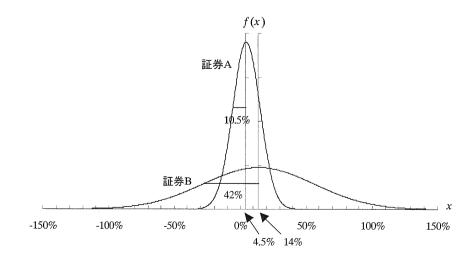
証券 A の標準偏差 $\sigma_{A} = \sqrt{0.011025}$ = 0.105 = 10.5%

= 10.5%

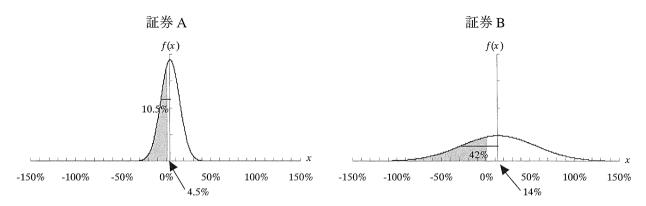
証券 B の標準偏差 $\sigma_B = \sqrt{0.1764}$

= 0.42= 42%

標準偏差 σ_X : standard deviation


$$\sigma_X = \sqrt{var(R_X)}$$

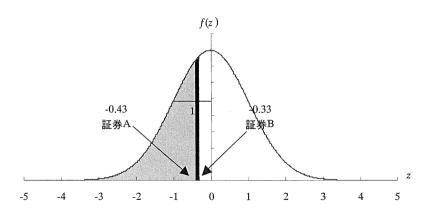
一般的に、ポートフォリオ理論で「リスク」と言った場合、この収益率の標準偏差を指します.


● 正規分布

証券 A と証券 B の収益率が正規分布に従うと仮定すると以下のようになります.

	期待収益率	標準偏差
証券 A	4.5%	10.5%
証券 B	14.0%	42.0%

1年後に証券 A, 証券 B の収益率が 0%以下になる(つまり損失が出る)確率は,以下のシャド一部分の全体に占める面積の割合です.

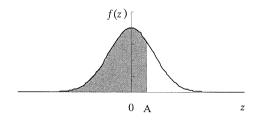


正規分布はいずれも同じ釣鐘型をしていますが μ , σ が異なると分布の形(中心の位置, 広がり具合)も異なります. そこで正規分布に従う変数xに次のような操作を加えます.

① 確率変数xから平均 μ を引く $x - \mu$

② ①を σ で割る $\frac{x-\mu}{\sigma} \qquad z = \frac{x-\mu}{\sigma} \quad とお < \infty$

確率変数 x を z に変換することを標準化とか正規化といい, z は平均 0, 分散 1 の正規分布 に従います。これが標準正規分布です。そうすると、もとの収益率 0%の位置は、証券 A は -0.43、証券 B は -0.33 となります。


1年後に収益率が0%以下になる(損失が出る)確率は、上記の標準正規分布のシャドー部分の全体に占める面積の割合であり、証券Bの方が高いことがわかります。

では標準正規分布表を使って、1年後に収益率が0%以下になる確率を求めてみます.

答えは、証券 A:33.36%、証券 B:37.07%です(次ページ参照).

標準正規分布表

Pr ob(z \le A) = F(A) =
$$\int_{-\infty}^{A} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz$$

	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.00	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.10	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.20	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.30	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.40	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.50	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.60	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.70	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.80	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.90	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.00	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.10	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.20	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.30	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.40	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.50	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.60	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.70	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.80	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.90	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.00	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.10	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.20	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.30	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.40	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.50	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.60	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.70	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.80	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.90	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.00	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

- z値: 最も左の第 1 列は z値の小数第 1 位までの値,最上段の第 1 行は z値の小数第 2 位の値を示しています.
- $\operatorname{Prob}(z \leq A)$: 表の中の数値 $0.5000 \sim 0.9990$ は、標準正規分布を線分で区切った左側 $(z \leq A)$ の面積(シャドー部分)の、全体に占める割合(つまり確率)を表しています.数値のスタートは平均(中心)の z = 0(確率: $\operatorname{Prob} = 50\%$)からであり、0.00 のところではちょうど左半分なので 0.5000(つまり 50%)、また 3.09 のところではもうかなり「全体」に近いので 0.9990(≈ 1 つまり 100%)といった具合です.
- 証券 A については、z が-0.43 を下回る確率が欲しいのですが、直接求めることができません。そこで、①正規分布が左右対称であること、②正規分布の内部の面積が全体で100%(=1)であること、を利用します。つまり、①+0.43 を下回る部分の面積を表から読みとり(0.6664)、②1 から引きます(1-0.6664=0.3336=33.36%)。
- 証券 B についても同様に①+0.33 を下回る部分の面積を表から読みとり (0.6293), ②1 から引きます (1-0.6293=0.3707=37.07%).

(3) 2証券の関係

④ 共分散

景気の状態	確率 (P)	$P_{i} \times \underbrace{\left(R_{A,i} - E[R_{A}]\right)}_{\text{\tiny \vec{A}}} \times \underbrace{\left(R_{B,i} - E[R_{B}]\right)}_{\text{\tiny \vec{A}}}$
好 況	30%	$0.3 \times (+0.15 - 0.045) \times (-0.40 - 0.14)$
普通	50%	$0.5 \times (+0.06 - 0.045) \times (+0.20 - 0.14)$
不 況	20%	$0.2 \times (-0.15 - 0.045) \times (+0.80 - 0.14)$
合 計	100%	=-0.0423

証券 A と証券 B の収益率の共分散

$$\begin{aligned} Cov_{A,B} &= 0.3 \times \left(+0.15 - E[R_A] \right) \left(-0.40 - E[R_B] \right) \\ &+ 0.5 \times \left(+0.06 - E[R_A] \right) \left(+0.20 - E[R_B] \right) \\ &+ 0.2 \times \left(-0.15 - E[R_A] \right) \left(+0.80 - E[R_B] \right) \\ &= 0.3 \times \left(+0.15 -0.045 \right) \left(-0.40 -0.14 \right) \\ &+ 0.5 \times \left(+0.06 -0.045 \right) \left(+0.20 -0.14 \right) \\ &+ 0.2 \times \left(-0.15 -0.045 \right) \left(+0.80 -0.14 \right) \\ &= -0.0423 \end{aligned}$$

証券 A と証券 B の収益率の共分散は-0.0423 と計算されました.ここから,証券 A の価格変動と証券 B の価格変動は逆の傾向にあることが示唆されます.つまり,証券 A の価格が上昇するときには証券 B の価格は下落し,反対に証券 A の価格が下落するときには証券 B の価格は上昇するといったような傾向が示唆されているわけです.

⑤ 相関係数

相関係数 $(\rho_{A,B})$ は、共分散 $(Cov_{A,B})$ をそれぞれの標準偏差 (σ_{A},σ_{B}) で割る (標準化する) ことによって求められます.

$$\rho_{A,B} = \frac{Cov_{A,B}}{\sigma_A \sigma_B} = \frac{-0.0423}{0.105 \times 0.420} = -0.9591...$$

$$\approx -0.96$$

相関係数 $\rho_{X,Y}$: correlation coefficient

$$\rho_{X,Y} = \frac{Cov_{X,Y}}{\sigma_X \sigma_Y}$$

$$(\rho: -1 \le \rho \le +1)$$

- 共分散の場合は変数の大きさに影響を受けたが、この欠点がなくなる
- 相関係数は-1と+1の間の値をとる

負の完全相関:全く逆の方向に変動する

負の相関: 逆の方向に変動する傾向がある

無相関:変動に何の関係もない

正の相関:同じ方向に変動する傾向がある

正の完全相関:全く同じ方向に変動する

共分散-0.0423から, 証券 Aの価格変動と証券 Bの価格変動は逆の傾向にあることが示唆されましたが、相関係数によってその「傾向の程度」がかなりはっきりしてきました。つまり、相関係数-0.96ですから、負の完全相関(-1)に近く、証券 Aの価格変動と証券 Bの価格変動はかなり強い逆の傾向にあると言えます。

4. 補足:ポートフォリオ(2証券)のリスクとリターン ※第6章「ポートフォリオ・マネジメント」の予告編(ずいぶん先の話ですが...)

(1) 投資比率 (w)

現在、手元に 100 万円あるとします (総投資額: W). 証券 A への投資額 (W_A) を 60 万円, 証券 B への投資額 (W_B) を 40 万円とすると、それぞれの投資比率は以下のようになります.

証券 A への投資比率
$$w_A = \frac{W_A}{W} = \frac{60万円}{100万円} = 0.6 = 60\%$$
 証券 B への投資比率 $w_B = \frac{W_B}{W} = \frac{40万円}{100万円} = 0.4 = 40\%$

(2) ポートフォリオのリターン (期待収益率: $E[R_p]$)

2 証券(X,Y)ポートフォリオの期待収益率($E[R_p]$) 各証券への投資比率の加重平均

$$E[R_p] = w_X E[R_X] + w_Y E[R_Y]$$

証券 A と証券 B へのそれぞれの投資比率で加重平均します.

$$E[R_p] = w_A E[R_A] + w_B E[R_B]$$
= 0.6 \times 4.5\% + 0.4 \times 14.0\%
= 8.3\%

(3) ポートフォリオのリスク(分散: σ_p^2 ないし標準偏差: σ_p)

2 証券 (X,Y) ポートフォリオの分散 (σ_n^2)

各証券への投資比率の加重平均以下

$$\begin{split} \sigma_{p}^{2} &= w_{X}^{2} \sigma_{X}^{2} + w_{Y}^{2} \sigma_{Y}^{2} + 2w_{X} w_{Y} Cov_{XY} \\ &= w_{X}^{2} \sigma_{X}^{2} + w_{Y}^{2} \sigma_{Y}^{2} + 2w_{X} w_{Y} \rho_{XY} \sigma_{X} \sigma_{Y} \end{split}$$

相関係数が+1.0 ではないので、証券 A と証券 B へのそれぞれの投資比率で加重平均未満になります。まず分散は以下の通りです。

$$\sigma_p^2 = w_A^2 \sigma_A^2 + w_B^2 \sigma_B^2 + 2w_A w_B \rho_{AB} \sigma_A \sigma_B$$

$$= 0.6^2 \times 0.105^2 + 0.4^2 \times 0.42^2 + 2 \times 0.6 \times 0.4 \times (-0.96) \times 0.105 \times 0.42$$

$$= 0.01187172$$

$$\approx 0.01187$$

標準偏差は平方根をとります.

$$\sigma_p = \sqrt{var(R)} = \sqrt{0.01187}$$

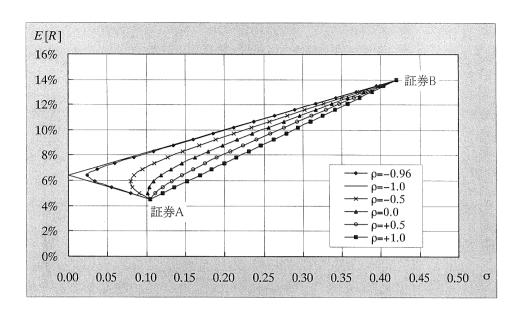
= 0.10894...
 $\approx 10.9\%$

(参考) 導出は以下の通りです.

$$\begin{split} \sigma_{p}^{2} &= E\Big[\Big(R_{p} - E\Big[R_{p} \Big] \Big)^{2} \Big] \\ &= E\Big[\Big\{ \Big(w_{X}R_{X} + w_{Y}R_{Y} \Big) - \Big(w_{X}E\Big[R_{X} \Big] + w_{Y}E\Big[R_{Y} \Big] \Big) \Big\}^{2} \Big] \\ &= E\Big[\Big\{ \Big(w_{X}R_{X} - w_{X}E\Big[R_{X} \Big] \Big) + \Big(w_{Y}R_{Y} - w_{Y}E\Big[R_{Y} \Big] \Big) \Big\}^{2} \Big] \\ &= E\Big[\Big\{ w_{X} \Big(R_{X} - E\Big[R_{X} \Big] \Big) \Big\}^{2} + \Big\{ w_{Y} \Big(R_{Y} - E\Big[R_{Y} \Big] \Big) \Big\}^{2} + 2w_{X}w_{Y} \Big(R_{X} - E\Big[R_{X} \Big] \Big) \Big(R_{Y} - E\Big[R_{Y} \Big] \Big) \Big] \\ &= E\Big[w_{X}^{2} \Big(R_{X} - E\Big[R_{X} \Big] \Big)^{2} + w_{Y}^{2} \Big(R_{Y} - E\Big[R_{Y} \Big] \Big)^{2} + 2w_{X}w_{Y} \Big(R_{X} - E\Big[R_{X} \Big] \Big) \Big(R_{Y} - E\Big[R_{Y} \Big] \Big) \Big] \\ &= w_{X}^{2} E\Big[\Big(R_{X} - E\Big[R_{X} \Big] \Big)^{2} \Big] + w_{Y}^{2} E\Big[\Big(R_{Y} - E\Big[R_{Y} \Big] \Big)^{2} \Big] + 2w_{X}w_{Y} E\Big[\Big(R_{X} - E\Big[R_{X} \Big] \Big) \Big(R_{Y} - E\Big[R_{Y} \Big] \Big) \Big] \\ &= w_{X}^{2} \sigma_{X}^{2} + w_{Y}^{2} \sigma_{Y}^{2} + 2w_{X}w_{Y} Cov_{XY} \Big] \end{split}$$

$$\mathcal{Z}\mathcal{Z}\mathcal{T}, \quad \rho_{XY} = \frac{Cov_{XY}}{\sigma_{X}\sigma_{Y}} \quad \Leftrightarrow \quad Cov_{XY} = \rho_{XY}\sigma_{X}\sigma_{Y} \quad \text{fxor} \, \mathcal{T},$$

$$\sigma_{p}^{2} = w_{x}^{2} \sigma_{x}^{2} + w_{y}^{2} \sigma_{y}^{2} + 2w_{x} w_{y} \rho_{xy} \sigma_{x} \sigma_{y}$$


分散効果(ポートフォリオ効果)

- 通常,ポートフォリオのリスクは,共分散もしくは相関係数の項を含むため,各証券の分散(標準偏差)を投資比率で加重平均したものにはなりません.
- p<+1であればリスクを投資比率の加重平均未満に抑えることができます.

2パラメータ(平均・分散)・アプローチ

n 証券 (i,j=1,2,3,...,n) から成るポートフォリオPのリスクとリターン

リターン(期待収益率)
$$E\left[R_p\right] = \sum_{i=1}^n w_i E\left[R_i\right]$$
 リスク(分散ないし標準偏差)
$$\sigma_p^2 = \sum_{i=1}^n \sum_{j=1}^n w_i w_j \sigma_{ij}$$

$$= \sum_{i=1}^n \sum_{j=1}^n w_i w_j \rho_{ij} \sigma_i \sigma_j$$

_	証券	期待収益率	標準偏差
_	Α	4.50%	10.50%
	В	14.00%	42.00%

組み入れ」		期待収益率			標準	偏差		
小丘のアンペイじ」		州村松亚午	case0	case1	case2	case3	case4	case5
A	В		-0.96	-1	-0.5	0	+0.5	+1
0%	100%	14.00%	42.00%	42.00%	42.00%	42.00%	42.00%	42.00%
5%	95%	13.53%	39.40%	39.38%	39.64%	39.90%	40.17%	40.43%
10%	90%	13.05%	36.79%	36.75%	37.29%	37.81%	38.34%	38.85%
15%	85%	12.58%	34.19%	34.13%	34.94%	35.73%	36.51%	37.28%
20%	80%	12.10%	31.59%	31.50%	32.60%	33.67%	34.70%	35.70%
25%	75%	11.63%	28.99%	28.88%	30.27%	31.61%	32.89%	34.13%
30%	70%	11.15%	26.39%	26.25%	27.96%	29.57%	31.09%	32.55%
35%	65%	10.68%	23.80%	23.63%	25.66%	27.55%	29.31%	30.98%
40%	60%	10.20%	21.20%	21.00%	23.38%	25.55%	27.54%	29.40%
45%	55%	9.73%	18.62%	18.38%	21.14%	23.58%	25.79%	27.83%
50%	50%	9.25%	16.03%	15.75%	18.93%	21.65%	24.06%	26.25%
55%	45%	8.78%	13.46%	13.13%	16.78%	19.76%	22.35%	24.68%
60%	40%	8.30%	10.90%	10.50%	14.70%	17.94%	20.68%	23.10%
65%	35%	7.83%	8.38%	7.88%	12.74%	16.21%	19.05%	21.53%
70%	30%	7.35%	5.93%	5.25%	10.96%	14.59%	17.48%	19.95%
75%	25%	6.88%	3.69%	2.62%	9.46%	13.13%	15.97%	18.38%
80%	20%	6.40%	2.40%	0.00%	8.40%	11.88%	14.55%	16.80%
85%	15%	5.93%	3.39%	2.63%	7.94%	10.92%	13.25%	15.23%
90%	10%	5.45%	5.55%	5.25%	8.20%	10.34%	12.11%	13.65%
95%	5%	4.98%	7.98%	7.88%	9.11%	10.19%	11.17%	12.08%
100%	0%	4.50%	10.50%	10.50%	10.50%	10.50%	10.50%	10.50%

※) 証券 A:60%, 証券 B:40%の投資比率のポートフォリオをみると、期待収益率は 8.30% で同じですが、相関係数が低くなるほど標準偏差は小さくなっています.

電卓の使い方

※機種によってキーの表示スタイルや機能が異なりますのでご注意ください.

e.g.) このレジュメ p.4: 証券 A の分散の計算

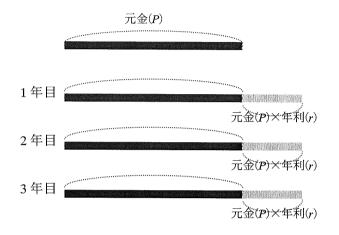
 $\sigma_A^2 = 0.3 \times (+0.15 - 0.045)^2 + 0.5 \times (+0.06 - 0.045)^2 + 0.2 \times (-0.15 - 0.045)^2$ = 0.011025

通常の電卓(SHARP 社製 EL-S882X)での計算例

入力	計算内容・意味
15 — 4.5 × = × 0.3 = M+	(+0.15-0.045) ² ×0.3を記憶
$C \cdot C E$	一旦ご破算
$6 - 4.5 \times = \times 0.5 + RM = CMM+$	(+0.06 – 0.045)²×0.5+上記計算を記憶
$C \cdot CE$	一旦ご破算
$-15 - 4.5 \times = \times 0.2 + RM =$	(-0.15-0.045)²×0.2+上記計算を記憶
110.25	答え
√ 10.5	標準偏差 10.5%

関数電卓(CASIO 社製 FC-200V)での計算例

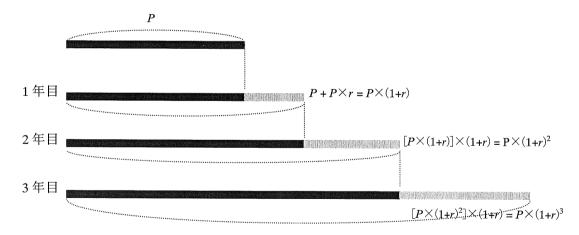
入力	計算内容・意味
0.3 × (15 – 4.5) SHIFT 6 2)	$0.3 \times (+0.15 - 0.045)^2$
+ 0.5 × (6 - 4.5) SHIFT 6 2)	$+0.5\times(+0.06-0.045)^2$
$+$ 0.2 \times ($-$ 15 $-$ 4.5) SHIFT 6 2)	$+0.2\times(-0.15-0.045)^2$
EXE	「演算せよ」
110.25	答え
SHIFT 5 110.25) EXE	標準偏差 10.5%


※関数電卓(CASIO 社製 FC-200V): 初期設定に戻す(リセット)

入力 (がキー入力, は画面)	計算内容・意味		
SHIFT 9			
Clear ?	「初期設定に戻す?」		
▼▼	2 つスキップして All (すべてリセット) へ		
All	すべてリセット		
EXE	実行		
Rreset All? [EXE]: Yes	「すべてリセット?」「はい」		
EXE	実行		
Reset All Press [AC] Key	- 実行し完了		
AC			

■ 投資の基礎概念

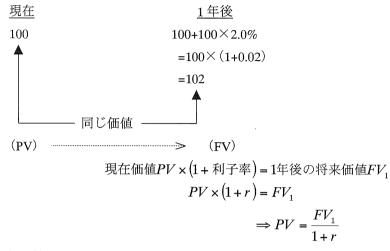
1. 単利と複利


(1) 単利:元金(元本)のみが生む利息 → 利息に対する利息(再投資収益)を考慮しない

3年目の元利合計: $P+3\times(P\times r)=P\times(1+3r)$

n年目の元利合計 : $P \times (1+nr)$

(2) 複利:利息を元金(元本)に加えて次の期間の利息を計算 → 再投資収益を考慮する



3年目の元利合計 : $P \times (1+r)^3$

n年目の元利合計 : $P \times (1+r)^n$

2. 現在価値 (PV; Present Value) と将来価値 (FV; Future Value)

現在:100 円 (B/K 利子率 r:年 2.0%)

2年に拡張

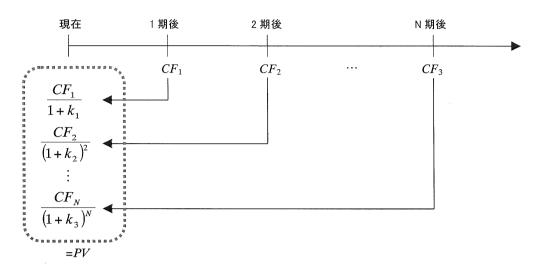
現在
$$\frac{1 \mp 6}{100}$$

$$100 \times (1+0.02)$$

$$PV \times (1+r)^2 = FV_2$$

$$\Rightarrow PV = \frac{FV_2}{(1+r)^2}$$

n年に一般化


$$PV = \frac{FV_n}{(1+r)^n}$$
 $= \frac{1}{(1+r)^n} \times FV_n$
Discount Factor(割引係数)
 PV : 現在価値, FV_n : n 年後の将来価値, r :割引率

- 3. 内部収益率(IRR; Internal Rate of Return)
 - ・今, 10,000 円投資すると 2 年後に元利合計で 10,404 円戻ってくる
 - ・この投資案件の1年当たりの平均投資収益率は…

$$10,000 = \frac{10,404}{(1+r)^2} \qquad (1+r)^2 = \frac{10,404}{10,000}$$
$$r = \sqrt{\frac{10,404}{10,000}} - 1$$
$$= 0.02$$

■ 資産価値評価の基本

=その資産が将来にわたって生み出すキャッシュフロー(CF)の現在価値(PV)の合計 割引現在価値法 (DCF: Discount Cash-Flow)

$$PV = \frac{CF_1}{1+k_1} + \frac{CF_2}{(1+k_2)^2} + \frac{CF_3}{(1+k_3)^3} + \dots + \frac{CF_N}{(1+k)^N}$$
$$= \sum_{t=1}^N \frac{CF_t}{(1+k_t)^t}$$

ただし、CF.:t 期のキャッシュフロー、k:t 期の割引率.

*) 総和(シグマ):Σ

連続した足し算を簡潔化する記号で「**シグマ**」と読みます.ファイナンスの分野では非常によく登場するので、慣れておいた方がよいでしょう.

$$\sum_{i=1}^n x_i$$
 ⇒ 意味
$$\begin{cases} \sum : \text{合計せよ} \\ x_i : 何を \rightarrow \{x_1, x_2, x_3, ..., x_n\} \text{という数の集合について} \\ i = 1 : どこから \rightarrow i = 1(x_1)から \\ n : どこまで \rightarrow i = n(x_n)$$
まで

例 1)
$$1+2+3+4+5 = \sum_{k=1}^{5} k$$

例 2)
$$\sum_{x=2}^{4} x^2 = 2^2 + 3^2 + 4^2 = 4 + 9 + 16 = 29$$

$$-\lim_{n \to \infty} (\zeta, \quad \sum_{i=1}^{n} x_i = x_1 + x_2 + x_3 + \dots + x_n)$$

▼ TAC基本テキストと協会通信テキストとの対応関係

TAC 基本テキスト	協会通信テキスト	
第1章:証券分析の基礎	1) 証券分析とポートフォリオ・マネジメントの基礎	
	7) 債券分析	
第2章:債券分析	7) 債券分析	
第3章:ファンダメンタル分析	5) 企業のファンダメンタル分析	
第4章:株式分析	6) 株式分析	
第5章:デリバティブ分析	8) デリバティブ分析	
第6章:ポートフォリオ・マネジメント	1) 証券分析とポートフォリオ・マネジメントの基礎	
	2) 計量分析と統計学(1)	
	3) 現代ポートフォリオ理論	
	9) ポートフォリオ・マネジメント・プロセス	
第7章:証券市場の機能と仕組み	4) 証券市場の機能と仕組み	
付録	2) 計量分析と統計学(1)	

● 出題傾向(平成24年春)

証券分析とポートフォリオ・マネジメント (大問 6 問, 合計 98 問) 180 分

	<u> </u>							
問題	分 野	内容	理論					
第1問	日本の証券市場 (14 問:15 点)	証券市場の機能と仕組み	※制度など					
第2問	企業のファンダメンタル分析 (15 問: 28 点)	個別銘柄の分析・評価	財務分析					
第3問	株式分析 (16 問:32 点)	個別銘柄の分析・評価	現在価値					
第4問	債券分析 (18 問:35 点)	個別銘柄の分析・評価	現在価値					
第5問	デリバティブ分析 (15 問:30 点)	個別銘柄の分析・評価	現在価値,無裁定					
第6問	ポートフォリオ・マネジメント (20 問:40 点)	・証券分析とポートフォリオ・マネジメントの基礎 ・現代ポートフォリオ理論 ・ポートフォリオ・マネジ メント・プロセス	・(リスク)分散効果 ・投資家の選好 ・パフォーマンス評価					

^{*} 選択問題(四者ないし五者択一)

※第1問・第2問・第3問が例年と異なる配点

※平成 19 年の試験制度・通信教育プログラム改定後初の 100 問割れ

1次 証券分析とポートフォリオ・マネジメント 速修講義 進度予定表

- ※ 速修講義は、下記のような予定で講義を進めます。
- ※ 場合により進度予定が前後する場合がございます。予めご了承ください。

速修講義	項目		テキストの進度予定		
1	第1章 証券分析とポートフォリオ・マネジメントの基礎	P. 1	~	P. 27	
2	第2章 債券分析 I	P. 29	~	P. 67	
3	第2章 債券分析 Ⅱ	P. 68	~	P. 97	
4	第3章 ファンダメンタル分析	P. 99	~	P. 138	
	第4章 株式分析 I	P. 139	~	P. 145	
5	第4章 株式分析 Ⅱ	P. 146	~	P. 165	
6	第5章 デリバティブ分析 I	P. 167	~	P. 187	
7	第5章 デリバティブ分析 Ⅱ	P. 188	~	P. 233	
8	第6章 ポートフォリオ・マネジメント I	P. 235	~	P. 264	
9	第6章 ポートフォリオ・マネジメント Ⅱ	P. 265	~	P. 301	
10	第6章 ポートフォリオ・マネジメント Ⅲ	P. 302	~	P. 334	
	第7章 証券市場の機能と仕組み	P. 335	~	P. 365	

TAC 証券アナリスト講座