令和3年度 秋期試験 エンベデッドシステムスペシャリスト(ES) 出題傾向分析

TAC株式会社

ES 午前 I 出題傾向

- ●全体として、組込みシステム技術者として知って おくべき、基本的、標準的な知識を問う問題が多い。
- ●"重点出題分野"とされる「コンピュータ構成要素」「ソフトウェア」「ハードウェア」「セキュリティ」「システム開発技術」から各3~5問ずつ出題。

ES 午前Ⅱ 出題分野別出題数

出題分野	出題比率	出題数
コンピュータ構成要素	20%	5問
システム構成要素	4%	1問
ソフトウェア	16%	4問
ハードウェア	16%	4問
ネットワーク	4%	1問
セキュリティ	12%	3問

ES 午前 II 出題分野別出題数

出題分野	出題比率	出題数
システム開発技術	16%	4問
ソフトウェア開発管理技術	4%	1問
ビジネスインダストリ	8%	2問

ES 午前Ⅱ 問題別難易度

問	テーマ	分野名	難易度
1	アウトオブオーダ方式	コンピュータ構成要素	В
2	命令アドレスレジスタ	コンピュータ構成要素	В
3	メモリインタリーブ	コンピュータ構成要素	Α
4	レジスタのI/Oポート	コンピュータ構成要素	С
5	MQTT	コンピュータ構成要素	В
6	密結合マルチプロセッサ	システム構成要素	Α
7	スケジューリング のラウンドロビン 方式	ソフトウェア	А
8	セグメントテーブル	ソフトウェア	С
9	ファイル領域の割当て	ソフトウェア	В
10	ハッシュ表の理論的探索時間	ソフトウェア	А

ES 午前Ⅱ 問題別難易度

11	PWM	ハードウェア	Α
12	ROMのメモリアドレス範囲	ハードウェア	В
13	3入力AND回路	ハードウェア	В
14	CPUの低消費電力化技術	ハードウェア	С
15	ICMP	ネットワーク	В
16	共通鍵暗号方式	セキュリティ	Α
17	ディジタルフォレンジックス	セキュリティ	С
18	エンベロープ暗号化	セキュリティ	В
19	フェールセーフ	システム開発技術	Α
20	ペトリネットモデル	システム開発技術	В

ES 午前Ⅱ 問題別難易度

21	MVC	システム開発技術	В
22	アサーションチェック	システム開発技術	В
23	スクラムにおけるスプリント	ソフトウェア開発管理技術	С
24	ディジタルサイネージ	ビジネスインダストリ	Α
25	ディジタルツイン	ビジネスインダストリ	С

ES 午後 I 出題傾向

- ●前回から、3問(配点各50点)から任意の2問を 選択するという出題形式に変更。
- ●問1及び問2はソフトウェア設計, 問3はハードウェア設計。
- ●各問とも3つの設問があり、設問1及び設問2で現在のシステムの仕様や機能を問い、設問3で機能の追加や改良を問う構成。

ES 午後 I 問別特徴と難易度

問	項目	内容
	問題テーマ	ペット医療の点滴で用いるシリン ジポンプ
1	事例内容	動物への点滴で使用されるペット 医療用のシリンジポンプの開発
	設問要求	点滴流量の制御、ポンプのタスクの処理、作業ミス防止機能の追加など
	難易度	С

ES 午後 I 問別特徴と難易度

問	項目	内容
	問題テーマ	デジタルトランスフォーメーション を用いたレストラン
2	事例内容	店舗運営の効率化及び客の待 ち時間の短縮のためのシステム の開発
	設問要求	レストランのタスクの処理,料理搬送ロボットの導入など
	難易度	В

ES 午後 I 問別特徴と難易度

問	項目	内容
	問題テーマ	スマート畜産システム
	事例内容	牛の健康状態を管理するシステムの 開発
3	設問要求	牛の活動状態の判定, 首輪デバイス の省電力, 畜産システムの改良など
	難易度	A

ES 午後 II 出題傾向

- ●問1がハードウェア設計, 問2がソフトウェア設計。
- ●問1, 問2ともIoTを用いたシステム。
- ●設問1及び設問2で現在のシステムの仕様や機能を問い、設問3で新サービスや機能の追加を問う構成。

ES 午後 II 問別特徴と難易度

問	項目	内容
	問題テーマ	駅でサービスを行うロボット
	実務手順	駅構内で利用者の案内、警備、移動支援を行うロボットの開発
1	設問要求	実施するサービス、利用者認識、情報共有処理、乗換え支援など
	難易度	В

ES 午後 II 問別特徴と難易度

問	項目	内容
	問題テーマ	生産ラインの可視化システム
	実務手順	ロット生産を行う加工工場の生産工 程の稼働状況や生産状況の可視化
2	設問要求	システムの仕様、制御プログラムの動作、複数工場で分担するライン
	難易度	С

ES 今後の対策 午前Ⅱ

- ●組込みシステム特有の技術はES試験の過去問題から多く再出題される傾向。
- ●できるだけ多くのES試験の過去問題を学習して、 再出題に備えておくことが重要。

ES 今後の対策 午前Ⅱ

午前Ⅱ試験で出題が予想される問題の概要

キーワード	解說
LPWA	小容量データを無線、長距離、低速度、
(Low Power	低消費電力で伝送できる、IoTでの利
Wide Area)	用に適した通信技術の総称
エネルギー	環境や人間活動から自然に生じる微
ハーベスティ	小なエネルギーを電気に変えて利用す
ング	る技術
マルチレベル	データに秘密ラベルを付与して、単一
セキュリティ	システムで完全区分管理することで,
	データの機密性や完全性を守る概念

ES 今後の対策 午前Ⅱ

キーワード	解說
スプリントレト	スクラムを適用するアジャイル開発に
ロスペクティブ	おいて、プロジェクト分割期間を意味す
	るスプリントを、KPT手法などを用いて
	振り返り、継続的なプロセス改善を促
	進するアクティビティ
Hadoop	ビッグデータの格納と分散処理を可能
(ハドゥープ)	にするソフトウェアライブラリ

ES 今後の対策 午後 I

- ●午後試験でとり上げられるシステムは、大部分の受験者にとって開発経験のないもの。
- ●3問とも, 設問1及び設問2の配点は6~7割(30~35点)と考えられる。

ES 今後の対策 午後 I

午後I試験で出題が予想される問題の概要

項目	内容
問題テーマ	倉庫内物流ロボットの開発
事例内容	ピッキングや搬送を行うロボットの仕様, サーバとの通信
設問要求	ロボットの性能,効率的な搬送方法, 機能の改良

ES 今後の対策 午後Ⅱ

- ●配点は、2問とも、設問1及び設問2が8割(80点)程度で、機能拡張や変更を考える設問3は2割(20点)程度と考えられる。
- ●設問1及び設問2の単語問題や簡単な計算問題は、確実に正解したい。
- ●記述問題で部分点を含めて少しでも多くの得点を取る。

ES 今後の対策 午後Ⅱ

午後Ⅱ試験で出題が予想される問題の概要

項目	内容
問題テーマ	自動運転車の制御システムの開発
実務手順	自動運転の仕組み, センサ等の構成要素, 車載ネットワーク
設問要求	人を介さない交通状況の判断, 危険発 生時の安全確保動作