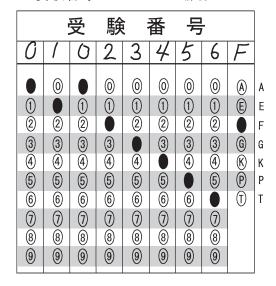
第一種

筆 記 試 験

〔試験時間 2時間20分〕

令和2年度

試験が始まる前に,次の注意事項をよく読んでおいてください。


1. 答案用紙(マークシート)の記入方法について

(1) HBの鉛筆(又はHBの芯を用いたシャープペンシル)を使用して、答案用紙に例示された「良い例」にならって、マーク(濃く塗りつぶす)してください。 色鉛筆及びボールペン等は、絶対に使用しないでください。

- (2) 訂正する場合は、プラスチック消しゴムできれいに、完全に消してください。
- (3) 答案用紙の記入欄以外の余白及び裏面には、何も記入しないでください。
- (4) 答案用紙には、**受験番号、氏名、生年月日、試験地**を必ず記入してください。 特に、**受験番号は受験票と照合**して、右の記入例に従って正しく記入、マーク してください。
- **注**) 受験番号に「1」がある場合, **誤って「0」にマーク**しないよう特に注意 してください。

(受験番号記入例)

受験番号 01023456F の場合

2. 解答の記入方法について

- (1) 解答は四肢択一式ですから、1問につき答えを1つだけ選択(マーク)してください。
- (2) 答案用紙に解答を記入する場合は、次の例にならって答案用紙の解答欄の符号にマークしてください。

(解答記入例)

問い	答え
日本で一番人口の多い都道府県は。	イ. 北海道 ロ. 東京都 ハ. 大阪府 ニ. 沖縄県

正解は「ロ.」ですから、答案用紙には、

 (マーク記入前)
 (マーク記入後)

 ① ① ① ② ② ②
 ② ② ② ②

のように正解と思う選択肢記号の () を濃く塗りつぶしてください。

<u>答案用紙は、機械で読み取りますので、「1.答案用紙(マークシート)の記入方法について」、「2.解答の記入方法について」の</u> 指示に従わない場合は、採点されませんので特に注意してください。

<筆記試験受験上の注意事項>

- (1) 電卓(電子式卓上計算機),スマートフォン、携帯電話、PHS及び電卓機能・通信機能のある時計等は、使用できません。 (持参した場合は、電源を切って、しまっておいてください)
- (2) 机の上に出してよいものは、次のものだけです。
 - ・受験票 ・写真票 ・HBの鉛筆(シャープペンシルを含む) ・鉛筆削り ・プラスチック消しゴム ・時計
 - ・定規 ・ストップウォッチ ・眼鏡 ・ルーペ ・色鉛筆 色ボールペン

試験問題に使用する図記号等と国際規格の本試験での取り扱いについて

1. 試験問題に使用する図記号等

試験問題に使用される図記号は、原則として「JIS C $0617-1\sim13$ 電気用図記号」及び「JIS C 0303:2000構内電気設備の配線用図記号」を使用することとします。

2.「電気設備の技術基準の解釈」の適用について

「電気設備の技術基準の解釈について」の第218条,第219条の「国際規格の取り入れ」の条項は本試験には適用しません。

問題1. 一般問題 (問題数40, 配点は1問当たり2点)

次の各問いには4通りの答え($\mathbf{4}$, $\mathbf{0}$, \mathbf{n} , \mathbf{n} , \mathbf{n}) が書いてある。それぞれの問いに対して答えを1つ選びなさい。なお,選択肢が数値の場合は,最も近い値を選びなさい。

	選択肢が数値の場合は、最も近い値を選びなる 問い			 答 え	
1	図のように、静電容量 $6 \mu F$ のコンデンサ 3 個を接続して、直流電圧 $120 V$ を加えたとき、図中の電圧 V_1 の値 $[V]$ は。				
	$\begin{array}{c c} 6 \mu F & & V_1 \\ \hline 6 \mu F & & G \mu F \end{array}$	イ. 10	□. 30	/ \. 50	=. 80
2	図のような直流回路において, a-b 間の電圧 [V]は。				
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1. 2	□. 3	/\. 4	=. 5
3	図のように、角周波数が ω = 500 rad/s、電圧 100 V の交流電源に、抵抗 R = 3 Ω とインダクタンス L = 8 mH が接続されている。回路に流れる電流 I の値 $[A]$ は。 $\frac{I}{R} > \frac{3}{R} \frac{\Omega}{L}$ ω = 500 rad/s	イ. 9	□. 14	/\. 20	=. 33
4	図のような交流回路において,抵抗 12 Ω, リアクタンス 16 Ω,電源電圧は 96 V である。 この回路の皮相電力 [V·A] は。	イ. 576	□. 768	/ \. 960	二 . 1344

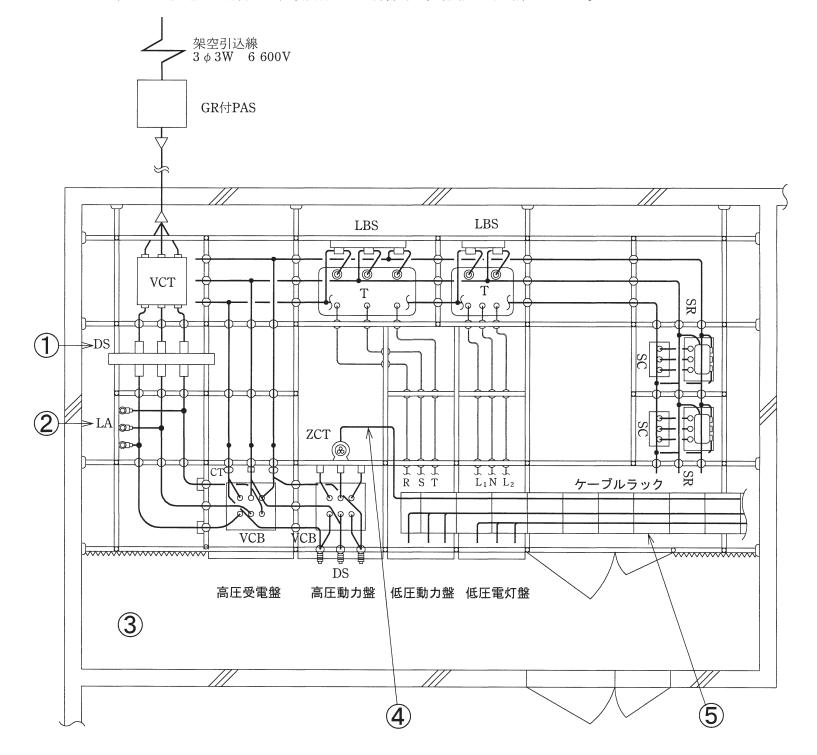
	to the second se	,			
	問 い			答 え	
5	図のような三相交流回路において、電源電圧は $200\mathrm{V}$ 、抵抗は 20Ω 、リアクタンスは 40Ω である。この回路の全消費電力 $[\mathrm{kW}]$ は。				
	$3\phi3$ W 200 V 40 Ω 20 Ω 40 Ω 20 Ω 40 Ω 20 Ω 40 Ω 20 Ω 40 Ω 20 0 0 0 0 0 0 0 0 0	イ. 1.0	□. 1.5	/\. 2.0	= . 12
6	図のような単相 3 線式配電線路において, 負荷 A, 負荷 B ともに負荷電圧 100 V, 負荷 電流 10 A, 力率 0.8 (遅れ) である。このとき, 電源電圧 V の値 [V] は。 ただし,配電線路の電線 1 線当たりの抵抗は 0.5 Ω である。 なお,計算においては,適切な近似式を用 いること。	イ. 102	□. 104	/\. 112	=. 120

	問 V`			 答 え	
7	図のように、三相 3 線式構内配電線路の 末端に、力率 0.8(遅れ)の三相負荷がある。 この負荷と並列に電力用コンデンサを設置 して、線路の力率を 1.0 に改善した。コンデンサ設置前の線路損失が 2.5 kW であるとすれば、設置後の線路損失の値[kW]は。 ただし、三相負荷の負荷電圧は一定とする。	1.0	□. 1.6	ハ. 2.4	=. 2.8
8	図のように、変圧比が 6300/210 V の単相変圧器の二次側に抵抗負荷が接続され、その負荷電流は 300 A であった。このとき、変圧器の一次側に設置された変流器の二次側に流れる電流 I [A] は。ただし変流器の変流比は 20/5 A とし、負荷抵抗以外のインピーダンスは無視する。	イ. 2.5	□. 2.8	/\. 3.0	=. 3.2
9	負荷設備の合計が 500 kW の工場がある。 ある月の需要率が 40%, 負荷率が 50%であった。この工場のその月の平均需要電力[kW] は。	イ. 100	□. 200	/\. 300	=. 400

	問 V			答 え
10	定格電圧 200 V, 定格出力 11 kW の三相誘導電動機の全負荷時における電流[A]は。 ただし、全負荷時における力率は80%、効率は90%とする。	イ.	23	B □. 36
11	「日本産業規格(JIS)」では照明設計基準の一つとして,維持照度の推奨値を示している。同規格で示す学校の教室(机上面)における維持照度の推奨値[lx]は。	イ.	30	D. 300 N. 900 =. 1300
12	変圧器の出力に対する損失の特性曲線において、aが鉄損、bが銅損を表す特性曲線として、正しいものは。	٦.		ロ. ↑ 損失 □ 出力 = . ↑ 損失 □ 出力
13	インバータ(逆変換装置)の記述として,正 しいものは。	ロ. ハ.	直泛交流	流電力を直流電力に変換する装置 流電力を交流電力に変換する装置 流電力を異なる交流の電圧,電流に変換する装置 流電力を異なる直流の電圧,電流に変換する装置
14	低圧電路で地絡が生じたときに、自動的に電路を遮断するものは。	イ.		電流側 Table Table
		Λ.		CIRCUIT BREAKER OFF SO 0660H2 100A AC 220V ICU 10XA AC 220V ICU 10XA TO HET THE

Γ		
	問い 	答 え
15	写真に示す自家用電気設備の説明として、 最も適当なものは。 計測表示 整流器出力 電圧 電流 加大	 イ. 低圧電動機などの運転制御、保護などを行う設備 ロ. 受変電制御機器や、停電時に非常用照明器具などに電力を供給する設備 ハ. 低圧の電源を分岐し、単相負荷に電力を供給する設備 二. 一般送配電事業者から高圧電力を受電する設備
16	全揚程 200 m, 揚水流量が 150 m³/s である 揚水式発電所の揚水ポンプの電動機の入力 [MW]は。 ただし, 電動機の効率を 0.9, ポンプの効率 を 0.85 とする。	イ. 23 ロ. 39 ハ. 225 ニ. 384
17	タービン発電機の記述として, 誤っている ものは。	イ. タービン発電機は、駆動力として蒸気圧などを利用している。 ロ. タービン発電機は、水車発電機に比べて回転速度が大きい。 ハ. 回転子は、非突極回転界磁形(円筒回転界磁形)が用いられる。 ニ. 回転子は、一般に縦軸形が採用される。
18	送電・配電及び変電設備に使用するがいしの塩害対策に関する記述として, 誤っている ものは。	 イ.沿面距離の大きいがいしを使用する。 ロ.がいしにアークホーンを取り付ける。 ハ.定期的にがいしの洗浄を行う。 ニ.シリコンコンパウンドなどのはっ水性絶縁物質をがいし表面に塗布する。

	問 い	答え
19	配電用変電所に関する記述として, 誤っているものは。	 イ.配電電圧の調整をするために、負荷時タップ切換変圧器などが設置されている。 ロ.送電線路によって送られてきた電気を降圧し、配電線路に送り出す変電所である。 ハ.配電線路の引出口に、線路保護用の遮断器と継電器が設置されている。 ニ.高圧配電線路は一般に中性点接地方式であり、変電所内で大地に直接接地されている。
20	次の機器のうち、高頻度開閉を目的に使用されるものは。	イ. 高圧断路器ロ. 高圧交流負荷開閉器ハ. 高圧交流真空電磁接触器ニ. 高圧交流遮断器
21	キュービクル式高圧受電設備の特徴として, 誤っているものは。	イ.接地された金属製箱内に機器一式が収容されるので、安全性が高い。 ロ. 開放形受電設備に比べ、より小さな面積に設置できる。 ハ. 開放形受電設備に比べ、現地工事が簡単となり工事期間も短縮できる。 ニ. 屋外に設置する場合でも、雨等の吹き込みを考慮する必要がない。
22	写真に示す GR 付 PAS を設置する場合の 記述として、誤っているものは。	イ. 自家用側の引込みケーブルに短絡事故が発生したとき、自動遮断する。 ロ. 電気事業用の配電線への波及事故の防止に効果がある。 ハ. 自家用側の高圧電路に地絡事故が発生したとき、自動遮断する。 ニ. 電気事業者との保安上の責任分界点又はこれに近い箇所に設置する。
23	写真に示す機器の用途は。	イ. 零相電流を検出する。 ロ. 高電圧を低電圧に変成し、計器での測定を可能にする。 ハ. 進相コンデンサに接続して投入時の突入電流を抑制する。 ニ. 大電流を小電流に変成し、計器での測定を可能にする。

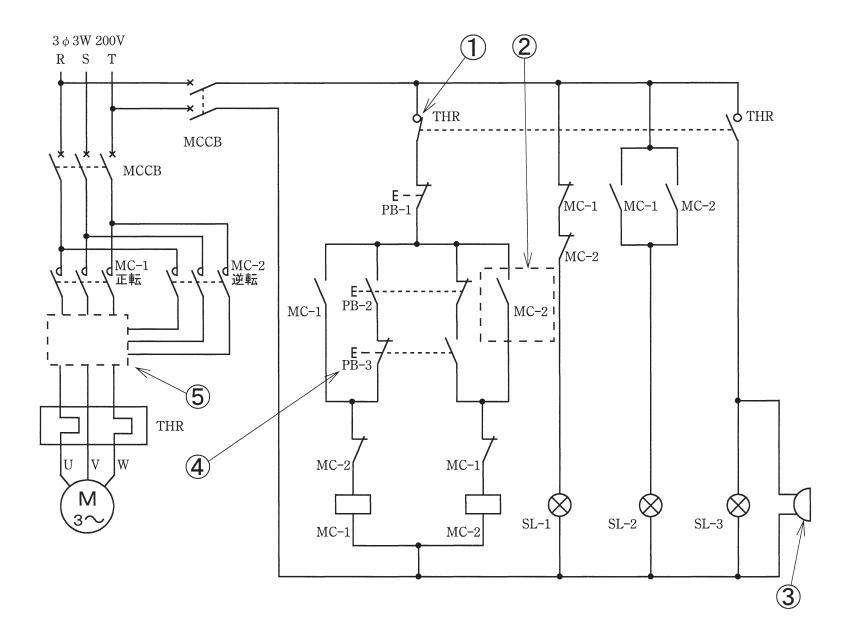

	問しい			答え	
24	低圧分岐回路の施設において,分岐回路を 保護する過電流遮断器の種類,軟銅線の太さ		分岐回路を保護する 過電流遮断器の種類	軟銅線の太さ	コンセント
	及びコンセントの組合せで,誤っているもの は。	1	定格電流 15 A	直径 1.6 mm	定格 15 A
			定格電流 20 A の 配線用遮断器	直径 2.0 mm	定格 15 A
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	定格電流 30 A	直径 2.0 mm	定格 20 A
		=	左 定格電流 30 A	直径 2.6 mm	定格 20 A (定格電流が 20 A 未満の 差込みプラグが接続で きるものを除く。)
25	引込柱の支線工事に使用する材料の組合せ として、 正しいものは 。				
	サーブル 取付板 電力量計 マー 電力量計	ロ. ハ.	亜鉛めっき鋼より線, 玉 耐張クランプ, 巻付グリ 耐張クランプ, 玉がいし 巻付グリップ, スリーブ	ップ, スリーブ , 亜鉛めっき鋼よ	り線
26	写真のうち、鋼板製の分電盤や動力制御盤 を、コンクリートの床や壁に設置する作業に おいて、一般的に使用されない工具はどれか。	1.	and the second s		
		۸.	拡大	拡大	
27	乾燥した場所であって展開した場所に施設する使用電圧 100 V の金属線び工事の記述として、誤っているものは。	ロ. ハ. ニ.	電線を収める線ぴの長さならない。	気用品安全法」の適 が 12 m の場合,I	い。 通用を受けるものであること。)種接地工事を施さなければ つ,電気的に完全に接続しな

	問い		答 え
28	高圧屋内配線を,乾燥した場所であって 展開した場所に施設する場合の記述として, 不適切なものは。	ロ. ハ.	高圧ケーブルを金属管に収めて施設した。 高圧ケーブルを金属ダクトに収めて施設した。 接触防護措置を施した高圧絶縁電線をがいし引き工事により施設した。 高圧絶縁電線を金属管に収めて施設した。
29	地中電線路の施設に関する記述として、誤っているものは。	ロ. ハ.	長さが 15 m を超える高圧地中電線路を管路式で施設し、物件の名称、管理者名及び電圧を表示した埋設表示シートを、管と地表面のほぼ中間に施設した。 地中電線路に絶縁電線を使用した。 地中電線に使用する金属製の電線接続箱に D 種接地工事を施した。 地中電線路を暗きょ式で施設する場合に、地中電線を不燃性又は自消性のある難燃性の管に収めて施設した。

問い30から問い34までは、下の図に関する問いである。

図は、自家用電気工作物構内の受電設備を表した図である。この図に関する各問いには、4通りの答え $(\mathbf{7}, \mathbf{p}, \mathbf{n}, \mathbf{n})$ が書いてある。それぞれの問いに対して、答えを $\mathbf{1}$ つ選びなさい。

〔注〕図において、問いに関連した部分及び直接関係のない部分等は、省略又は簡略化してある。

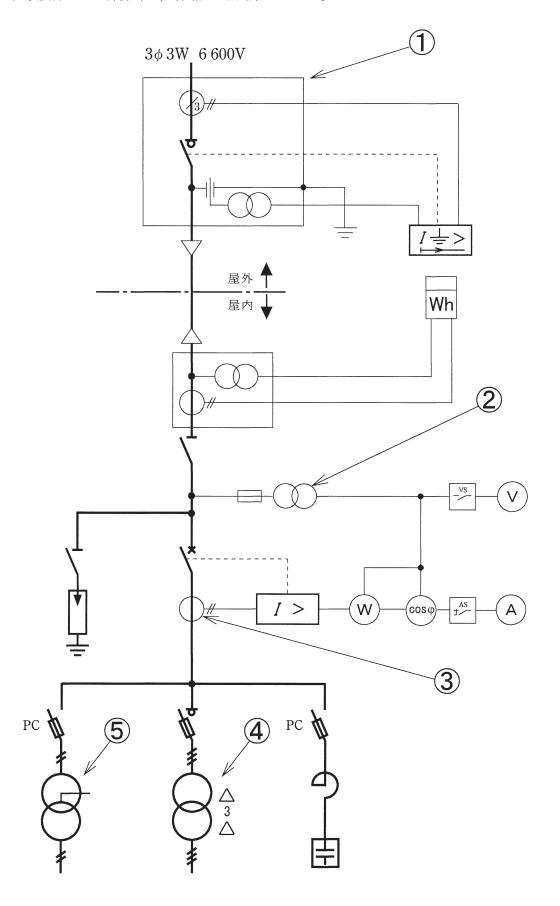

	問 い	答え
30	①に示す DS に関する記述として、 誤っているものは 。	 イ. DS は負荷電流が流れている時,誤って開路しないようにする。 ロ. DS の接触子(刃受)は電源側,ブレード(断路刃)は負荷側にして施設する。 ハ. DS は断路器である。 ニ. DS は区分開閉器として施設される。
31	②に示す避雷器の設置に関する記述として, 不適切なものは。	 イ.保安上必要なため、避雷器には電路から切り離せるように断路器を施設した。 ロ.避雷器には電路を保護するため、その電源側に限流ヒューズを施設した。 ハ.避雷器の接地は A 種接地工事とし、サージインピーダンスをできるだけ低くするため、接地線を太く短くした。 ニ.受電電力が 500 kW 未満の需要場所では避雷器の設置義務はないが、雷害の多い地域であり、電路が架空電線路に接続されているので、引込口の近くに避雷器を設置した。
32	③に示す受電設備内に使用される機器類などに施す接地に関する記述で、 不適切なものは 。	 イ. 高圧電路に取り付けた変流器の二次側電路の接地は、D種接地工事である。 ロ. 計器用変圧器の二次側電路の接地は、B種接地工事である。 ハ. 高圧変圧器の外箱の接地の主目的は、感電保護であり、接地抵抗値は 10 Ω以下と定められている。 ニ. 高圧電路と低圧電路を結合する変圧器の低圧側の中性点又は低圧側の1端子に施す接地は、混触による低圧側の対地電圧の上昇を制限するための接地であり、故障の際に流れる電流を安全に通じることができるものであること。
33	④に示す高圧ケーブル内で地絡が発生した場合,確実に地絡事故を検出できるケーブルシールドの接地方法として,正しいものは。	イ. 口. ハ. 二. 電源側 電源側 電源側 電源側 まです。 立 上
34	⑤に示すケーブルラックに施設した高圧ケーブル配線,低圧ケーブル配線,弱電流電線の配線がある。これらの配線が接近又は交差する場合の施工方法に関する記述で, 不適切なものは 。	イ. 高圧ケーブルと低圧ケーブルを 15 cm 離隔して施設した。 ロ. 複数の高圧ケーブルを離隔せずに施設した。 ハ. 高圧ケーブルと弱電流電線を 10 cm 離隔して施設した。 ニ. 低圧ケーブルと弱電流電線を接触しないように施設した。

	問い	答え
35	自家用電気工作物として施設する電路又は機器について、C 種接地工事を施さなければならないものは。	
36	受電電圧 6600 V の受電設備が完成した時の自主検査で、一般に行わないものは。	イ. 高圧電路の絶縁耐力試験ロ. 高圧機器の接地抵抗測定ハ. 変圧器の温度上昇試験二. 地絡継電器の動作試験
37	CB 形高圧受電設備と配電用変電所の過電流 継電器との保護協調がとれているものは。 ただし、図中①の曲線は配電用変電所の過 電流継電器動作特性を示し、②の曲線は高圧 受電設備の過電流継電器と CB の連動遮断特性 を示す。	イ. ロ. ハ. 二. 中間
38	「電気工事士法」及び「電気用品安全法」 において, 正しいものは 。	 イ.交流 50 Hz 用の定格電圧 100 V, 定格消費電力 56 W の電気便座は、特定電気用品ではない。 ロ. 特定電気用品には、(PS)E と表示されているものがある。 ハ. 第一種電気工事士は、「電気用品安全法」に基づいた表示のある電気用品でなければ、一般用電気工作物の工事に使用してはならない。 ニ. 電気用品のうち、危険及び障害の発生するおそれが少ないものは、特定電気用品である。
39	「電気工事業の業務の適正化に関する法律」 において、主任電気工事士に関する記述として、 誤っているものは。	 イ.第一種電気工事士免状の交付を受けた者は、免状交付後に実務経験が無くても主任電気工事士になれる。 ロ.第二種電気工事士は、2年の実務経験があれば、主任電気工事士になれる。 ハ.第一種電気工事士が一般用電気工事の作業に従事する時は、主任電気工事士がその職務を行うため必要があると認めてする指示に従わなければならない。 ニ.主任電気工事士は、一般用電気工事による危険及び障害が発生しないように一般用電気工事の作業の管理の職務を誠実に行わなければならない。
40	「電気工事士法」において,第一種電気工事士免状の交付を受けている者のみが従事できる電気工事の作業は。	 イ. 最大電力 400 kW の需要設備の 6.6 kV 変圧器に電線を接続する作業 ロ. 出力 300 kW の発電所の配電盤を造営材に取り付ける作業 ハ. 最大電力 600 kW の需要設備の 6.6 kV 受電用ケーブルを電線管に収める作業 ニ. 配電電圧 6.6 kV の配電用変電所内の電線相互を接続する作業

問題2. 配線図1 (問題数5, 配点は1問当たり2点)

図は、三相誘導電動機を、押しボタンの操作により正逆運転させる制御回路である。この図の矢印で示す 5 箇所に関する各問いには、4 通りの答え(1, 1, 1, 1) が書いてある。それぞれの問いに対して、答えを 1 つ選びなさい。

〔注〕図において、問いに直接関係のない部分等は、省略又は簡略化してある。


	問い	答え
41	①で示す接点が開路するのは。	イ. 電動機が正転運転から逆転運転に切り替わったとき ロ. 電動機が停止したとき ハ. 電動機に,設定値を超えた電流が継続して流れたとき ニ. 電動機が始動したとき
42	②で示す接点の役目は。	イ. 押しボタンスイッチ PB-2 を押したとき,回路を短絡させないためのインタロックロ. 押しボタンスイッチ PB-1 を押した後に電動機が停止しないためのインタロックハ. 押しボタンスイッチ PB-2 を押し,逆転運転起動後に運転を継続するための自己保持こ. 押しボタンスイッチ PB-3 を押し,逆転運転起動後に運転を継続するための自己保持

	問い	答 え
43	③で示す図記号の機器は。	 □.
		STREET AND THE STREET
44	④で示す押しボタンスイッチ PB-3 を	
	正転運転中に押したとき、電動機の動作	
	は。	ハ. 正転運転を継続する。ニ. 熱動継電器が動作し停止する。
45	⑤で示す部分の結線図は。	1. D. N. =. RST RST RST
		U V W U V W U V W

問題3. 配線図2 (問題数5, 配点は1問当たり2点)

図は、高圧受電設備の単線結線図である。この図の矢印で示す 5 箇所に関する各問いには、4 通りの答え($\mathbf{7}$, $\mathbf{0}$, $\mathbf{7}$, $\mathbf{7}$) が書いてある。それぞれの問いに対して、答えを1つ選びなさい。

〔注〕図において、問いに直接関係のない部分等は、省略又は簡略化してある。

問い			答 え				
46	①で示す機器の役割は。	ロ. ハ.	需要家側電気記一般送配電事		・検出し,高月 故を検出し,	E交流負荷開 高圧交流遮	閉器を開放する。 断器を自動遮断する。
47	②で示す機器の定格一次電圧[kV]と 定格二次電圧[V]は。	イ.	6.6 kV 105 V	□. 6.6 kV 110 V	/\. 6	5.9 kV 05 V	=. 6.9 kV 110 V
48	③で示す部分に設置する機器と個数は。	イ.		個)	Π.	3) 60 6 8 9	(2個)
		л.		1個)	Ξ.		(2個)
49	④に設置する機器と台数は。	イ.	(3	台)	Π.		(1 台)
		Λ.	(3	台)	Ξ.		(1台)

	問い			答え		
50	⑤で示す部分に使用できる変圧器の 最大容量[kV·A]は。	イ. 50	□. 100	/\. 200	=. 300	

令和2年度第一種電気工事士筆記試験の解答(令和2年10月4日(日)実施)

問	解答
1	II
2	П
3	/
4	\(\)
5	/
6	П
7	П
8	1
9	1
10	/\

問	解答
11	П
12	ıl
13	П
14	1
15	П
16	ıl
17	ıl
18	П
19	=
20	/\

問	解答
21	II
22	イ
23	ıl
24	\
25	イ
26	1
27	1
28	-
29	
30	=

問	解答
31	П
32	П
33	7
34	<
35	イ
36	/
37	II
38	/
39	П
40	イ

問	解答
41	/\
42	
43	1
44	/\
45	/\
46	
47	
48	=
49	1
50	